藏羚羊与藏绵羊心肌、骨骼肌中肌红蛋白含量和乳酸脱氢酶活性的比较
作者:
基金项目:

国家973计划项目 (No.2012CB518200),国家留学人员科技活动项目(青人专字[2009]8号),青海大学中青年科研项目(No.2008-QY-03)


Comparison on the Myoglobin Contents and Lactate Dehydrogenase Activity in Cardiac and Skeletal Muscles between Tibetan Antelope and Tibetan Sheep
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探讨藏羚羊(Pantholops hodgsonii)对低氧环境的适应机制。以生活在同海拔(4 300 m)的藏绵羊(Tibetan Sheep)为对照,用分光光度法测定2种动物心肌、骨骼肌中肌红蛋白(myoglobin, Mb)含量、乳酸(lactic acid, LD)含量及乳酸脱氢酶(lactate dehydrogenase, LDH)活力。结果显示,藏羚羊心肌和骨骼肌中Mb含量明显高于藏绵羊(P<0.05),但心肌和骨骼肌的Mb含量无差别(P>0.05),而藏绵羊心肌Mb含量明显高于骨骼肌(P<0.05);藏羚羊心肌和骨骼肌中LD含量及LDH活力明显低于藏绵羊(P<0.05),且2种动物心肌中的LDH活力均明显低于其骨骼肌(P<0.01)。结果表明,藏羚羊尽管生活在高寒缺氧地区,其心肌和骨骼肌细胞仍然能得到丰富的氧供应,并非处于缺氧状态, 这可能是通过增加心肌和骨骼肌中Mb的含量,提高其在低氧环境获取和储存氧的能力,从而提高有氧获能水平。与之相反,藏绵羊尽管也生活在高寒缺氧地区,但其心肌和骨骼肌中Mb含量相对于藏羚羊较低,且LD含量和LDH活力较高,说明其心肌和骨骼肌细胞内氧供不如藏羚羊丰富,提示藏绵羊可能主要以糖酵解获能。我们推测这种差异可能与两种动物不同的运动习性密切相关,且认为藏羚羊较高的Mb含量可能是其适应高原缺氧条件的分子基础之一。

    Abstract:

    To explore the adaptive mechanism to hypoxia in Tibetan Antelope (Pantholops hodgsonii), we compared the contents of myoglobin (Mb), lactic acid (LD) and the activity of lactate dehydrogenase (LDH) in cardiac and skeletal muscles by spectrophotometry in Tibetan Antelope and Tibetan Sheep from the same elevation . The results showed that the contents of Mb in cardiac and skeletal muscles of Tibetan Antelope were significantly higher than in Tibetan Sheep (P<0.05), while no significant difference was observed between cardiac and skeletal muscles in Tibetan Antelope (P>0.05). However, the content of Mb in cardiac was significantly higher than that in skeletal muscle in Tibetan Sheep (P<0.05). The contents of LD and the activity of LDH in cardiac and skeletal muscles of Tibetan Antelope were significantly lower than in Tibetan Sheep (P<0.05), and the activity of LDH in cardiac muscle was significantly lower than that in skeletal muscle in the two groups. The results suggest that Tibetan Antelope could improve its ability to obtain and store oxygen under hypoxia by increasing the contents of Mb in cardiac and skeletal muscles,so that its cardiac and skeletal muscles could be supplied with rich oxygen in hypoxic environment. On the contrary, Tibetan Sheep is also a hypoxia-adapted species; it has less Mb, but higher LD content and LDH activity in cardiac and skeletal muscles, suggesting that it may obtain most energy from aerobic oxidation. Therefore, we speculate the above-mentioned differences might be related to different sports capabilities of two hypoxia-adapted species, and we consider that higher Mb content in Tibetan Antelope might be one of the molecular mechanisms for hypoxia adaption.

    参考文献
    [1] Ge R L, Kubo K, Kobayashi T, et al. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol: Heart Circ Physiol, 1998, 274(5): H1792-H1799.
    [2] 马兰, 格日力. 高原鼠兔低氧适应分子机制的研究进展. 生理科学进展, 2007, 38(2): 143-146.
    [3] 陈秋红. 高原鼠兔肺动脉血管功能及形态变化. 中国应用生理学杂志, 2001, 17(2): 178-181.
    [4] Widmer H R, Hoppeler H, Nevo E, et al. Working underground: respiratory adaptations in the blind mole rat. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 2062-2067.
    [5] 王晓君, 魏登邦, 魏莲, 等. 高原鼢鼠和高原鼠兔红细胞低氧适应特征. 四川动物, 2008, 27(6): 1100-1103.
    [6] 魏登邦, 张建梅, 魏莲, 等. 高原鼢鼠对低氧高二氧化碳环境适应的相关血液生理指标的季节变化. 动物学报, 2006, 52(5): 871-877.
    [7] Heath D, Williams D, Dickinson J. The pulmonary arteries of the Yak. Cardio Res, 1984, 18(3): 133-139.
    [8] Kuang L D, Zheng Y C, Lin Y Q, et al. High-altitude adaptation of Yak based on genetic variants and activity of lactate dehydrogenase-1. Biochem Genet, 2010, 48(5/6): 418-427.
    [9] Durrmowicz A G, Hofmeister S, Kadyraliev T K, et al. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J Appl Physiol, 1993, 74(5): 2276-2285.
    [10] 郑玉才, 苏永杰, 文勇立, 等. 牦牛肌红蛋白的基因克隆测序、分离纯化、含量及其与乳酸脱氢酶和苹果酸脱氢酶活力的关系. 畜牧兽医学报, 2007, 38(7): 646-650.
    [11] Xu S Q, Yang Y Z, Zhou J, et al. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii). Genomics, Proteomics and Bioinformatics, 2005, 3(1): 5-17.
    [12] 常荣, 杨应忠, 马祁生, 等. 藏羚羊和藏系绵羊左心室收缩功能的比较研究. 中国病理生理杂志, 2010, 26(8): 1498-1502.
    [13] 张雪峰, 杨应忠, 裴志伟, 等. 藏羚羊和藏系绵羊血液内分泌激素水平的比较研究. 生理学报, 2011, 63(4): 342-346.
    [14] 刘芳, 乌仁塔娜, 马兰, 等. 藏羚羊低氧诱导因子1α基因的克隆与组织表达. 生理学报, 2011, 63(6): 565-573.
    [15] Yang Y Z, Yunden D, Jin G E, et al. Molecular cloning of hemoglobin alpha-chain gene from Pantholops hodgsonii,a hypoxic tolerance species. Biochem Mol Biol, 2007, 40(3): 426-431.
    [16] 马兰, 白振忠, 杨应忠, 等. 藏羚羊肌红蛋白(MGB)基因编码区的克隆与分析. 动物学杂志, 2007, 42(5): 70-75.
    [17] 陈铭, 杨欣, 周兆年. 心肌肌红蛋白含量的生化测定方法. 中国应用生理学杂志, 1998, 14(3): 283-284.
    [18] Livingston D J, La Mar G N, Brown W D. Myoglobin diffusion in bovine heart muscle. Science, 1983, 220(4592): 71-73.
    [19] 朱世海, 齐新章, 王晓君, 等. 高原鼢鼠和高原鼠兔骨骼肌摄氧功能差异. 生理学报, 2009, 61(4): 373-378.
    [20] Wright T J, Davis R W. The effect of myoglobin concentration on aerobic dive limit in a weddell seal. J Exp Biol, 2006, 209(13): 2576-2585.
    [21] Kanatous S B, Garry D J. Gene deletional strategies reveal novel physiological roles for myoglobin in striated muscle. Respir Physiol Neurobiol, 2006, 151(2/3): 151-158.
    [22] 魏登邦, 马建宾. 高原鼢鼠和小白鼠心肌及骨肌肌红蛋白含量与乳酸脱氢酶活力的比较研究. 青海大学学报: 自然科学版, 2001, 19(2): 20-21.
    [23] 齐新章, 王晓君, 朱世海, 等. 高原鼢鼠和高原鼠兔心脏对低氧环境的适应. 生理学报, 2008, 60(3): 348-354.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马兰,杨应忠,靳国恩,格日力.2012.藏羚羊与藏绵羊心肌、骨骼肌中肌红蛋白含量和乳酸脱氢酶活性的比较.动物学杂志,47(3):35-39.

复制
文章指标
  • 点击次数:2988
  • 下载次数: 3190
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-10-10
  • 最后修改日期:2012-03-04
  • 在线发布日期: 2012-06-22