3种中型蜘蛛卵袋形态特征与纤维组成结构
作者:
基金项目:

国家自然科学基金项目(No.31160420,31060282,30760041),江西省自然科学基金项目(No.2010GQN120)


Morphology and Fibrous Composite Structure of Egg Cases of Three Middle-size Spiders
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用扫描电镜和氨基酸自动分析仪对球蛛科(Theridiidae)温室拟肥腹蛛(Parasteatoda tepidariorum)、肖蛸蛛科(Tetragnathidae)肩斑银鳞蛛(Leucauge blanda)及狼蛛科(Lycosidae)猴马蛛(Hippasa holmerae) 3种中型蜘蛛卵袋的超微结构和氨基酸组成进行了观察。形态观察表明,这3种蜘蛛的卵袋形态各异,温室拟肥腹蛛卵袋一头尖,呈梨状;肩斑银鳞蛛卵袋呈扁平状;猴马蛛卵袋呈椭球形。扫描电镜观察表明,温室拟肥腹蛛卵袋外覆盖层仅仅由一种均一直径的柱状腺丝组成,而另外2种蜘蛛卵袋外覆盖层主要由柱状腺丝与少量其他丝腺纺出的丝纤维组成。氨基酸组成分析表明,温室拟肥腹蛛卵袋外覆盖层的丝纤维的氨基酸组成与具有保守性的其他种类蜘蛛柱状腺丝心蛋白的氨基酸组成差异较大,这表明其可能含有新的丝心蛋白家族成员。本文根据氨基酸组成与扫描电镜的结果分析探讨了不同直径丝纤维的丝腺来源。

    Abstract:

    The microstructures and fibrous composition of egg cases of three middle-size spiders, Parasteatoda tepidariorum (Theridiidae), Leucauge blanda (Tetragnathidae) and Hippasa holmerae (Lycosidae) were examined using SEM technique and amino acid analysis. The shapes of the egg cases of the above-mentioned three spiders are pear-shaped, flabelliform ellipsoid and ellipsoid respectively. The outer cover of the egg case of P.tepidariorum is only composed with one type of silk fiber with even diameter, whereas outer covers of other two spiders’ egg cases mainly consist of cylindrical gland silk together with a few other glands silk. The amino acid composition of cylindrical gland silk form P. tepidariorum egg case is very different from that of conserved Spidroin of cylindrical gland from other spiders, which indicates that cylindrical gland silk consists of unknown Spidroin. It needs to be identified through the further investigation of molecular biology. According to the amino acid composition and SEM, the gland origin of silk fiber with different diameter was analysized.

    参考文献
    [1] Austin A D. The function of spider egg sacs in relation to parasitoids and predators, with special reference to the Australian fauna. Journal of Natural History, 1985, 19(2): 359-376.
    [2] Hieber C S. The "insulation" layer in the cocoons of Argiope aurantia (Araneae: Araneidae). Journal of Thermal Biology, 1985, 10(3): 171-175.
    [3] Danks H V. The role of insect cocoons in cold conditions. European Journal of Entomology, 2004, 101(3): 433-437.
    [4] Turnbull A L. Ecology of the true spiders (Araneomorphae). Annual Review of Entomology, 1973, 18(1): 305-348.
    [5] Stubbs D G, Tillinghast E K, Townley M A, et al. Fibrous composite structure in a spider silk. Naturwissenschaften, 1992, 79(5): 231-234.
    [6] 蒋平, 卓春晖, 杨文博, 等. 棒络新妇和悦目金蛛丝腺形态初步观察. 蛛形学报, 2006, 15(2): 90-97.
    [7] 蒋平, 肖永红, 周兵, 等. 悦目金蛛卵袋的结构与组成. 动物学报, 2008, 54(5): 918-927.
    [8] 蒋平, 周兵, 肖永红, 等. 棒络新妇卵袋结构与组成. 四川动物, 2009, 28(4): 481-487.
    [9] 蒋平, 肖永红, 吕太勇, 等. 摩鹿加云斑蛛卵袋结构与纤维组成. 蛛形学报, 2010, 19(2): 92-98.
    [10] 蒋平, 吕太勇, 肖永红, 等. 横纹金蛛卵袋结构与纤维组成. 动物学杂志, 2011, 46(4): 92-101
    [11] Kim K W. Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behavioral Ecology and Sociobiology, 2000, 48(3): 182-187.
    [12] Kim K W, Kraff B, Choe J C. Cooperative prey capture by young subsocial spiders: Ⅰfunctional value. Behavioral Ecology and Sociobiology, 2005, 59(1): 92-100.
    [13] Kim K W. Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneae, Amaurobiidae). Journal of Insect Behavior, 2001, 14(3): 401-409.
    [14] Barghout J Y J, Thiel B L, Viney C. Spider (Araneus diadematus) cocoon silk: a case of non-periodic lattice crystals with a twist? International Journal of Biological Macromolecules, 1999, 24(2/3): 211-217.
    [15] Barghout J Y J, Czernuszka J T, Viney C. Multiaxial anisotropy of spider (Araneus diadematus) cocoon silk fibres. Polymer, 2001, 42(13): 5797-5800.
    [16] Tian M Z, Lewis R V. Molecular characterization and evolutionary study of spider tubuliform (egg case) silk protein. Biochemistry, 2005, 44(22): 8006-8012.
    [17] Casem M L, Turner D, Houchin K. Protein and amino acid composition of silks from the cob weaver, Latrodectus hesperus (black widow). International Journal of Biological Macromolecules, 1999, 24(2/3): 103-108.
    [18] Garb J E, Hayashi C Y. Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proceedings of the National Academy of Sciences, 2005, 102(32): 11379-11384.
    [19] Zhao A C, Zhao T F, Nakagaki K, et al. Novel molecular and mechanical properties of egg case silk from Wasp Spider, Argiope bruennichi. Biochemistry, 2006, 45(10): 3348-3356.
    [20] Hayashi C Y, Lewis R V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Journal of Molecular Biology, 1998, 275(5): 773-784.
    [21] Hayashi C Y, Blackledge T A, Lewis R V. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Molecular Biology and Evolution, 2004, 21(10): 1950-1959.
    [22] Vasanthavada K, Hu X Y, Falick A M, et al. Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spiderLatrodectus hesperus. The Journal of Biological Chemistry, 2007, 282(48): 35088-35097.
    [23] Mattina C L, Reza R, Hu X Y, et al. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus. Biochemistry, 2008, 47(16): 4692-4700.
    [24] Blasingame E, Tuton-Blasingame T, Larkin L, et al. Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. Journal of Biological Chemistry, 2009, 284(42): 29097-29108.
    [25] Hu X Y, Kohler K, Falick A M, et al. Spider egg case core fibers: trimeric complexes assembled from TuSp1, ECP-1, and ECP-2.Biochemistry, 2006, 45 (11): 3506-3516.
    [26] Van Nimmen E, Gellynck K, Van Langenhove L, et al. The tensile properties of cocoon silk of the spider Araneus diadematus. Textile Research Journal, 2006, 76(8): 619-628.
    [27] Van Nimmen E, Gellynck K, Gheysens T, et al. Modeling of the stress-strain behavior of egg sac silk of the spiderAraneus diadematus. The Journal of Arachnology, 2005, 33(2): 629-639.
    [28] 林冠伦, 钱贻隽. 十三种农田蜘蛛卵囊的识别. 昆虫天敌, 1981, 3(Suppl 1): 91-92.
    [29] Schimkewitsch W. Etude sur l'anatomie de l'Epeire. Annales Des Sciences Naturelles Aturelles-Zoology Et Biology Ani, 1884, 17: 1-94.
    [30] Sekiguchi K. Differences in the spinning organs between male and female adult spiders. Science Reports of the Tokyo Kyoiku Daigaku:Section B, 1955, 8: 23-32.
    [31] Gheysens T, Beladjal L Gellynck K, et al. Egg sac structure of Zygiella x-notata (Arachnida, Araneidae). Journal of Arachnology, 2005, 33(2): 549-557.
    [32] Foradori M J, Kovoor J, Moon M J, et al. Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings. Journal of Morphology, 2002, 252 (2): 218-226.
    [33] Moon M J. Fine structural analysis of the cocoon silk production in the garden spider, Argiope aurantia. Korean Journal of Biological Sciences, 2003, 7(1): 35-41.
    [34] 潘志娟, 李春萍, 刘敏, 等. 大腹圆蛛包卵丝的化学组成与物理机械性能. 东华大学学报: 自然科学版, 2002, 28(4): 34-39.
    [35] 潘志娟, 朱美男. 原子力显微镜下蚕丝及蜘蛛丝的微观结构. 材料科学与工程学报, 2005, 23(3): 365-368.
    [36] Jiang P, Guo C, Lv T Y, et al. Structure, composition and mechanical properties of the silk fibres of the egg case of the Joro spider, Nephila clavata (Araneae, Nephilidae). Journal of Biosciences, 2011, 36(5): 897-910.
    [37] Blackledge T A, Hayashi C Y. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). Journal of Experimental Biology, 2006, 209(13): 2452-2461.
    [38] 蒋平, 吕太勇, 肖永红, 等. 悦目金蛛和棒络新妇卵袋丝物理化学结构表征及其力学性能研究. 生物物理学报, 2010, 26(2): 149-163.
    [39] Hieber C S. The role of spider cocoons in controlling desiccation. Oecologia, 1992, 89(3): 442-448.
    [40] Anderson S O. Amino acid composition of spider silks. Comparative Biochemistry and Physiology, 1970, 35(3): 705-711.
    [41] Lombardi S J, Kaplan D L. The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnathidae). Journal of Arachnology, 1990, 18(3): 297-306.
    [42] Savage K N, Gosline J M. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. Journal of Experimental Biology, 2008, 211(12): 1937-1947.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋平,吕太勇,肖永红,廖信军,郭聪.2012.3种中型蜘蛛卵袋形态特征与纤维组成结构.动物学杂志,47(5):79-87.

复制
文章指标
  • 点击次数:3172
  • 下载次数: 3201
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-02-14
  • 最后修改日期:2012-05-09
  • 在线发布日期: 2012-10-25