基于COⅢ和HNF-1α序列研究龟鳖类的系统进化特征
作者:
基金项目:

广东省科技计划农业攻关项目(No.2010B020308004)


Phylogenetic Characteristics of Turtles Based on COⅢ and HNF-1α Sequence
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    用PCR扩增和测序的方法,获得小鳄龟(Chelydra serpentina)的COⅢ和HNF-1α序列,并分别结合NCBI中其他龟鳖的同源性序列进行比对分析。比对后得到757 bp的COⅢ一致序列和769 bp的HNF-1α一致序列。其中,COⅢ一致序列含有可变位点324个,序列总变异率为42.8%,简约信息位点230个;T、C、A、G的平均含量分别为27.5%、26.6%、30.8%、15.1%,A+T含量(58.3%)高于G+C含量(41.7%),转换/颠换比率(R)为2.62。HNF-1α一致序列有变异位点112个,变异率为14.6%,简约信息位点67个;T、C、A、G的平均含量为26.1%、23.1%、28.3%、22.6%,A+T含量为54.4%,G+C含量为45.7%,转换/颠换比率(R)为1.42。基于Kimura双参数模型计算龟鳖类种间、属间、科间遗传距离,并采用邻接法、最大简约法和最大似然法构建分子系统进化树。结果显示:基于COⅢ序列的淡水龟科4个属间的遗传距离为0.090~0.153,平均遗传距离为0.129;曲颈龟亚目5个科之间的遗传距离为0.150~0.207,平均遗传距离为0.177;基于HNF-1α序列的龟科9属间的遗传距离为0.003~0.051,平均为0.016;鳄龟科、龟科、淡水龟科3科间的遗传距离为0.044~0.067,平均为0.053。由遗传距离和构建的系统进化树可知,淡水龟科与陆龟科具有较近的亲缘关系,而与龟科的亲缘关系较远;支持龟科重新划分为两个分支;鳄龟科和海龟科亲缘关系较近,大鳄龟(Macroclemys temminckii)和小鳄龟可能同为一属。

    Abstract:

    COⅢ and HNF-1α sequences of Chelydra serpentina were obtained by using PCR amplification and sequencing in order to study the phylogenetic relationships of turtles. The homologous sequences of other turtles were downloaded from NCBI, and analyzed together with the sequences of C.serpentina. After alignment, 757 bp consensus sequences of COⅢ and 769 bp consensus sequences of HNF-1α were obtained. A total of 324 variable sites were detected in the COⅢ sequence, accounting for 42.8% of total sequences, and there were 230 parsim informative sites. The average contents of T, C, A and G were 27.5%, 26.6%, 30.8%, and 15.1% respectively, the content of A+T (58.3%) was bigger than that of G+C (41.7%), and the ratio between transition and transversion was 2.62. In the HNF-1α sequences, we detected 112 variable sites, accounting for 14.6% of total sequences, and 67 parsim informative sites were also found here. The average content was found to be 26.1% in T, 23.1% in C, 28.3% in A and 22.6% in G, the content of A+T and G+C were 54.4% and 45.7%, respectively, and the ratio between transition and transversion was 1.42. Interspecific, intergenus and interfamily genetic distances were calculated based on the kimura-2-parameter model, and the phylogenetic trees were constructed using neighbor joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) methods. The results indicated that kimura-2-parameter distances among 4 genus within Bataguridae based on COⅢ sequences ranged from 0.090 to 0.153, with an average of 0.129, the distances among 7 families within Testudines ranged from 0.150 to 0.207, with average value 0.177, and the kimura-2-parameter distances among 11 genus of Emydidae and Bataguridae based on HNF-1α sequences ranged from 0.003 to 0.051, with an average of 0.016, the distance among Chelydridae , Emydidae and Bataguridae were from 0.044 to 0.067 with average value 0.053. According to the genetic distance and phylogenetic trees, Bataguridae is closer to Testudinidae than that of Emydidae to Testudinidae. The data indicate that Emydidae may be redivided into two clades. Chelydridae and Cheloniidae have a close relationship, while Macroclemys temminckii and C.serpentina may be combined into one genus.

    参考文献
    [1] Rhodin A G J, Parham J F, Van Dijk P P, et al. Turtles of the world: annotated checklist of taxonomy and synonymy, 2009 update, with conservation status summary//A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Monographs. Conservation Biology of Freshwater Turtles and Tortoises. Massachusetts: Chelonian Research Foundation, 2009: 39-84.
    [2] Yasukawa Y, Hirayama R, Hikida T. Phylogenetic relationships of geoemydine turtles (Reptilia: Bataguridae). Current Herpetology, 2001, 20(2): 105-133.
    [3] Gaffney E S. A phylogeny and classification of the higher categories of turtles. Bulletin of the American Museum of Natural History, 1975, 155(5): 391-436.
    [4] Crumly C R. A cladistic analysis of Geochelone using cranial osteology. Journal of Herpetology, 1982, 16(3): 215-234.
    [5] 郑将臣, 万全, 程起群, 等. 基于两个核基因序列研究龟鳖类的系统进化特征. 大连海洋大学学报, 2011, 26(5): 452-457.
    [6] Mcdowell S B. Patition of the genus Clemmys and related problems in the taxonomy of the aquatic Tesudinidae. Proceedings of the Zoological Society of London, 1964, 143(2): 239-279.
    [7] 万全, 郑将臣, 程起群, 等. 基于12S rRNA序列研究龟鳖类的系统进化特征. 海洋渔业, 2010, 32(3): 264-274.
    [8] Gaffney E S, Meylan P A. A phylogeny of turtles//Benton M J. The Phylogeny and Classification of Tetrapods. Vol. 1. Amphibians, Reptiles, Birds. Systematics Association Special Volume Systematics Association Special Volume 35A. Oxford England: Clarendon Press, 1988: 157-219.
    [9] Honda M, Yasukawa Y, Hirayama R, et al. Phylogenetic relationships of the Asian box turtles of the genus Cuora sensu lato (Reptilia: Bataguridae) inferred from mitochondrial DNA sequences. Zoological Science, 2002, 19(11): 1305-1312.
    [10] 吴平, 周开亚, 杨群. 用12S rRNA基因序列研究潮龟科(Bataguridae)闭壳龟类的进化. 应用与环境生物学报, 1998, 4(4): 374-378.
    [11] Spinks P Q, Shaffer H B, Iverson J B, et al. Phylogenetic hypotheses for the turtle family geoemydidae. Molecular Phylogenetics and Evolution, 2004, 32(1): 164-182.
    [12] 李齐发, 李隐侠, 赵兴波, 等. 牦牛线粒体DNA D-loop区序列测定及其在牛亚科中分类地位的研究. 畜牧兽医学报, 2008, 39(1): 1-61.
    [13] Barley A J, Spinks P Q, Thomson R C, et al. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Molecular Phylogenetics and Evolution, 2010, 55(3): 1189-1194.
    [14] Spinks P Q, Shaffer H B. Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conservation Genetics, 2007, 8(3): 641-657.
    [15] Bauzer L G, Souza N A, Ward R D, et al. The period gene and genetic differentiation between three Brazilian populations of Lutzomyia longipalpis. Insect Molecular Biology, 2002, 11(4): 315-323.
    [16] 吴平, 周开亚, 杨群. 亚洲淡水和陆生龟鳖类12S rRNA基因片段的序列分析和系统发生研究. 动物学报, 1999, 45(3): 260-267.
    [17] 张艳云, 毕婷婷, 宋娇莲, 等. 基于线粒体Cyt b基因的全长序列探讨闭壳龟类的系统进化. 生物学杂志, 2011, 28(1): 22-26.
    [18] 李小三, 汪玲, 周科, 等. 基于线粒体Cyt b基因全序列探讨两爪鳖和山瑞鳖的系统进化关系. 生命科学研究, 2010, 14(5): 413-418.
    [19] 郑将臣, 万全, 程起群, 等. 基于16S rRNA序列探讨龟鳖类的遗传分化和系统发生. 湖南农业大学学报: 自然科学版, 2011, 37(2), 199-205.
    [20] Eugenia N M, Le M, Fitzsimmons N N, et al. Evolutionary relationships of marine turtles: a molecular phylogeny based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 2008, 49(2): 659-662.
    [21] Wang X Z, Li J B, He S P. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene sequences. Molecular Phylogenetics and Evolution, 2007, 42(1): 157-170.
    [22] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. Beijing: Science Press, 1996: 463-469.
    [23] 卢圣栋. 现代分子生物学实验技术. 2版. 北京: 中国协和医科大学出版社, 1999: 61-66.
    [24] 聂刘旺, 宋娇莲, 张颖, 等. 基于线粒体 ND4 基因探讨水龟组系统发生关系. 安徽师范大学学报: 自然科学版, 2007, 30(3): 343-348.
    [25] Guo Q L, Etsuko N M. Vector N T I, a balanced all-in-one sequence analysis suite. Brief Bioinformatics, 2004, 5(4): 378-388.
    [26] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
    [27] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16(2): 111-120.
    [28] Xia X H, Xie Z, Salemi M, et al. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 2003, 26(1): 1-7.
    [29] Bickham J W, Carr J L. Taxonomy and phylogeny of the higher categories of Cryptodiran turtles based on a cladistic analysis of chromosomal data. Copeia, 1983, (4): 918-932.
    [30] Seidel M E, Adkins M D. Variation in turtle myoglobins (subfamily Emydinae: Testudines) examined by isoelectric focusing. Comparative Biochemistry and Physiology: B, 1989, 94(3): 569-573.
    [31] 徐梅英, 李继姬, 郭宝英, 等. 基于线粒体DNA 12S rRNA和COⅢ基因序列研究中国沿海7个长蛸(Octopus variabilis)野生群体的遗传多样性. 海洋与湖沼, 2011, 42(3): 387-396.
    [32] 刘思情, 张家波, 唐琼英, 等. 基于ND4和ND5基因序列分析的鳅超科鱼类系统发育关系. 动物学研究, 2010, 31(3): 221-229.
    [33] Lucassen M, Koschnick N, Eckerle L G, et al. Mitochondrial mechanisms of cold adaptation in cod (Gadus morhua L) populations from different climatic zones. The Journal of Experimental Biology, 2006, 209(13): 2462-2471.
    [34] 郑洁, 李进, 于树娜, 等. 肝细胞核因子的研究进展. 医学综述, 2008, 14(4): 491-495.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘海情,刘楚吾,刘丽.2012.基于COⅢ和HNF-1α序列研究龟鳖类的系统进化特征.动物学杂志,47(6):92-102.

复制
文章指标
  • 点击次数:3051
  • 下载次数: 2595
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-06-26
  • 最后修改日期:2012-09-07
  • 在线发布日期: 2012-12-19