喜马拉雅中段繁殖鸟类种域格局及 Rapoport法则检验 ——基于3 600 m海拔梯度范围的数据
作者:
基金项目:

国家自然科学基金项目(No. 31400361,31901220)


Species Range Pattern of Breeding Birds in the Middle Part of the Himalayas with a Test of Rapoport?s Rule——Based on Data from an Altitude Gradient of 3 600 m
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    物种种域的分布规律是生物地理学与生物多样性研究的热点问题。Rapoport法则认为,物种分布范围随海拔上升而增大,但其适用性一直存在较大争议。喜马拉雅山脉是全球生物多样性热点地区之一,拥有全球最广的海拔落差以及完整的垂直气候和植被带,是验证Rapoport法则的理想场所。为探讨中喜马拉雅山脉吉隆沟3 600 m海拔梯度范围内繁殖鸟类种域分布是否符合Rapoport法则,于2012和2013年的雨季,利用样线法对中喜马拉雅吉隆沟地区的繁殖鸟类进行了4次调查。在海拔1 800 ~ 5 400 m的调查区域内,每300 m海拔梯度布设调查样线3条,共计36条样线。调查共记录到繁殖鸟类169种,种域范围低频方向呈明显偏右分布。平均种域为(1 642.29 ± 544.63)m,中值为728.5 m。其中,种域最大为3 300 m。分别使用Stevens方法、中点法、逐种法、Pagel法和四分法对调查数据进行处理,采用线性回归方程验证其是否符合Rapoport法则。结果表明,Rapoport法则的有效性与验证方法有关,Stevens方法、中点法、逐种法均不支持Rapoport法则,而Pagel法和四分法支持Rapoport法则。综合表明,吉隆沟繁殖鸟类种域海拔格局对Rapoport法则的支持较弱,说明Rapoport法则在该区域适用性较差。

    Abstract:

    The distribution rule of species range is a hotspot in the study on biogeography and biodiversity. According to the Rapoport’s law, it is believed that the range of species distribution increases as the altitude rises, but its applicability has been controversial. The Himalayas is one of the global biodiversity hotspots, with the largest altitude differences and complete vertical climate and vegetation zones in the world, so it is an ideal place to verify the Rapoport’s law. In order to investigate whether the species distribution of breeding birds within 3 600 m altitude gradient of Gyirong Valley section in the Middle Himalayas is in accordance with the Rapoport’s law, four surveys on breeding birds in Gyirong Valley section of the Middle Himalayas were carried out in rainy seasons of 2012 and 2013 using the line transect method. A total of 36 line transects were set up at an altitude range from 1 800 m to 5 400 m, with three line transects every 300 m altitude gradient (Fig. 1). A total of 169 species of breeding birds were recorded in the survey, and the species range was significantly skewed to the right (the average was 1 642.29 ± 544.63 m, the median was 728.5 m, and the maximum was 3 300 m, Fig. 2). Then, Stevens method, middle point method, Cross-species method, Pagel method and quartic method were used respectively to process the data, and the equation of linear regression was used to verify whether its complying with the Rapoport law. The results showed that the effectiveness of the Rapoport’s law was related to the verification method. Stevens’s method, middle point and Cross-species method did not support the Rapoport’s law, while Pagel method (R2 = 0.533) and quartic method (R2 = 0.382) supported the Rapoport’s law (Fig. 3). The comprehensive results demonstrated that the altitude pattern of breeding birds in Gyirong valley section presented a weak support for the Rapoport’s law, showing less applicable in this section.

    参考文献
    Acharya B K, Chettri B, Vijayan L, et al. 2011. Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica, 37(4): 329–336. Almeida-Neto M, Machado G, Pinto-da-Rocha R, et al. 2006. Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect to explain Rapoport's rule? Journal of Biogeography, 33(2): 361–375. Bernhard H. 2006. Latitudinal and altitudinal diversity patterns and Rapoport effects in north-west European land snails and their causes. Biological Journal of the Linnean Society, 82(2): 309– 323. Bhattarai K R, Vetaas O R. 2006. Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity & Distributions, 12(4): 373–378. Colwell R K. 2006. RangeModel: A Monte-Carlo Simulation Tool for Assessing Geometric Constraints on Species Richness, Version 5. [S/OL]. [2020-03-14]. http://viceroy.eeb.uconn.edu/rangemodel. Colwell R K, Hurtt G C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144(4): 570–595. Colwell R K, Lees D C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution 15(2): 70–76. Colwell R K, Rahbek C, Gotelli N J. 2004. The middomain effect and species richness patterns: what have we learned so far? American Naturalist, 163(3): E1–E23. Gaston K J, Blackburn T M, Spicer J I. 1998. Rapoport's rule: Time for an epitaph? Trends in Ecology & Evolution, 13(2): 70–74. Grytnes J A, Vetaas O R. 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist, 159(3): 294–304. Hu Y M, Jin K, Huang Z, et al. 2017. Elevational patterns of non-volant small mammal species richness in Gyirong Valley, Central Himalaya: Evaluating multiple spatial and environmental drivers. Journal of Biogeography, .44(12): 2764–2777. Joshi K, Bhatt D. 2015. Avian species distribution along elevation at Doon Valley (foot hills of western Himalayas), Uttarakhand, and its association with vegetation structure. Journal of Asia-Pacific Biodiversity, 8(2): 158–167. Letcher A J, Harvey P H. 1994. Variation in geographical range size among mammals of the Palearctic. The American Naturalist, 144(1): 30–42. McCain C M. 2004. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography, 31(1): 19–31. McCain C M. 2009. Gobal analysis of bird elevational diversity. Global Ecology and Biogeography, 18(3): 346–360. McCain C M, Knight K B. 2013. Elevational Rapoport’s rule is not pervasive on mountains. Global Ecology and Biogeography, 22(6): 750–759. Myers N, Mittermeier R A, Mittermeier C G. 2000. Biodiversity hotspot for conservation priorities. Nature, 403(6772): 853–858. Pagel M D, May R M, Collie A R. 1991. Ecological aspects of the geographical distribution and diversity of mammalian species. The American Naturalist, 137(6): 791–815. Pan X Y, Ding Z F, Hu Y M, et al. 2016. Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China. PeerJ, 4(11): 26–36. Price T D, Hooper D M, Buchanan C D, et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature, 509(7499): 222–225. Richard G, Carol I, Tim I. 2000. Birds of Nepal. New Jersey: Princeton University Press, 1–288. Rohde K. 1992. Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 65(3): 514–527. Rohde K. 1996. Rapoport’s rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters, 3(1): 10–13. Ruggiero A, Werenkraut V. 2007. One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography, 16(4): 401–414. Sanders N J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography, 25(1): 25–32. Sax D F. 2001. Latitudinal gradients and geographic ranges of exotic species: Implications for biogeography. Journal of Biogeography, 28(1): 139–150. Simberloff D, Rapoport E H, Drausal B. 1983. Areography geographical strategies of species. Journal of Biogeography, 10(2): 161–163. Stevens G C. 1989. The latitudinal gradients in geographical range: how so many species co-exist in the tropics. The American Naturalist, 133(2): 240–256. Stevens G C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. American Naturalist, 140(6): 893–911. Stevens G C. 1996. Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography, 23(2): 149–154. Vetaas O R, John A G. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11(4): 291–301. Wang Z H, Tang Z Y, Fang J Y. 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, in China’s mountains. Diversity and Distributions, 13(6): 845–854. Wu Y, Colwell R K, Rahbek C, et al. 2013. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40(12): 2310– 2323. Zapata F A, Gaston K J, Chown S L. 2003. Mid-domain models of species richness gradients: assumptions, methods and evidence. Journal of Animal Ecology, 72(4): 677–690. 胡一鸣. 2014. 喜马拉雅山陆生脊椎动物物种多样性垂直分布格局研究. 北京: 中国科学院动物研究所博士学位论文, 117–118 胡一鸣, 梁健超, 金崑, 等. 2018. 喜马拉雅山哺乳动物物种多样性垂直分布格局. 生物多样性, 26(2): 191–201. 梁军, 沈泽昊. 2010. 关于种域的Rapoport法则检验、算法比较及中域效应消减——以云南无量山种子植物为例. 山地学报, 28(5): 526–533. 卢绮妍, 沈泽昊. 2009. 神农架海拔梯度上的植物种域分布特征及Rapoport法则检验. 生物多样性, 17(6): 644–651. 罗振华. 2012. 中国陆生脊椎动物物种多样性和陆生哺乳动物种域分布格局及气候变化对青藏高原有蹄类动物分布的影响. 北京: 中国科学院动物研究所博士学位论文, 11–12. 潘虎君, 杨道德, 覃海华, 等. 2013. 珠穆朗玛峰国家级自然保护区两栖爬行动物多样性及区系. 生物多样性, 21(5): 610–615. 沈泽昊, 卢绮妍. 2009. 物种分布区范围地理格局的Rapoport法则. 生物多样性, 17(6): 560–567. 王同亮, 程林, 兰文军, 等. 2015. 江西武夷山国家级自然保护区两栖动物多样性及海拔分布特点. 生态学杂志, 34(7): 2009– 2014. 王襄平, 方精云, 唐志尧. 2009. 中域效应假说: 模型、证据和局限性. 生物多样性, 17(6): 568–578. 约翰·马敬能, 卡伦·菲利普斯, 何芬奇. 2000. 中国鸟类野外手册. 湖南: 湖南教育出版社, 1–570. 张婉君, 卢绮妍, 梁军, 等. 2010. 台湾维管束植物物种丰富度和种域宽度的海拔格局及对Rapoport法则的检验. 生物多样性, 18(3): 312–322. 郑光美. 2011. 中国鸟类分类与分布名录. 北京: 科学出版社, 1–401. 郑智, 龚大洁, 孙呈祥, 等. 2014. 白水江自然保护区两栖爬行动物物种丰富度和种域海拔梯度格局及对Rapoport法则的验证. 生态学杂志, 33(2): 537–546.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙雯,潘新园,梁健超,丁志锋,周江,胡慧建.2021.喜马拉雅中段繁殖鸟类种域格局及 Rapoport法则检验 ——基于3 600 m海拔梯度范围的数据.动物学杂志,56(3):358-366.

复制
文章指标
  • 点击次数:802
  • 下载次数: 1381
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-27
  • 最后修改日期:2021-03-11
  • 录用日期:2021-03-05
  • 在线发布日期: 2021-06-08