褪黑素延缓哺乳动物衰老的作用 及其机制的研究进展
作者:
作者单位:

1.山东师范大学生命科学学院 济南 250014;2.中国科学院动物研究所,农业虫害鼠害综合治理研究国家重点实验室 北京 100101;3.中国科学院生物互作卓越创新中心,中国科学院大学 北京 100049

基金项目:

国家自然科学基金项目(No. 31770440,31772461)


The Role of Melatonin in Delaying Aging and Related Mechanisms in Mammals
Author:
Affiliation:

1.①College of Life Sciences,Shandong Normal University;2.②State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences;3.College of Life Sciences,Shandong Normal University;4.Institute of Zoology, Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    褪黑素(melatonin)在哺乳动物中是主要由松果体分泌的一种多功能吲哚激素,具有抗氧化、调节睡眠、调节昼夜节律、增强免疫力、抑制肿瘤等作用,在哺乳动物的复杂衰老进程中发挥重要作用。本文从氧化应激和能量代谢两个方面综述了褪黑素在哺乳动物中延缓衰老的作用机制。褪黑素通过清除自由基、激发抗氧化作用以及保护线粒体功能从而减缓氧化应激;通过调节代谢感知、重建昼夜节律以及促进能量消耗调节能量代谢。最后对该领域今后可能的发展方向进行了展望。

    Abstract:

    Melatonin is a multifunctional indole hormone mainly secreted by the pineal gland in mammals. It has been known that melatonin, as an antioxidant, regulates sleep and circadian rhythms, enhances immunity, suppresses tumors, and delays aging process of mammals. This review summarized the mechanisms by which melatonin plays its function in delaying aging in mammals from two aspects of oxidative stress and energy metabolism, including retarding oxidative stress by scavenging free radicals, stimulating antioxidation and protecting mitochondrial function, and regulating energy metabolism by modulating metabolic sensing, re-establishing circadian rhythm and promoting energy expenditure. Finally, the future development of this field is prospected.

    参考文献
    Acu?a-Castroviejo D, Rahim I, Acu?a-Fernández C, et al. 2017. Melatonin, clock genes and mitochondria in sepsis. Cellular and Molecular Life Sciences, 74(21): 3965–3987. Agil A, Reiter R J, Jiménez Aranda A, et al. 2013. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. Journal of Pineal Research, 54(4): 381–388. Alonso-Vale M I C, Andreotti S, Borges-Silva C D N, et al. 2006. Intermittent and rhythmic exposure to melatonin in primary cultured adipocytes enhances the insulin and dexamethasone effects on leptin expression. Journal of Pineal Research, 41(1): 28–34. Baburina Y, Odinokova I, Azarashvili T, et al. 2017. 2′, 3′-Cyclic nucleotide 3′-phosphodiesterase as a messenger of protection of the mitochondrial function during melatonin treatment in aging. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859(1): 94–103. Barrett P, Bolborea M. 2012. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. Journal of Pineal Research, 52(4): 376–388. Burkewitz K, Zhang Y, Mair W B. 2014. AMPK at the nexus of energetics and aging. Cell Metabolism, 20(1): 10–25. Cannon B, Nedergaard J. 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1): 277–359. Cantó C, Jiang L Q, Deshmukh A S, et al. 2010. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metabolism, 11(3): 213–219. Carloni S, Facchinetti F, Pelizzi N, et al. 2018. Melatonin acts in synergy with hypothermia to reduce oxygen-glucose deprivation-induced cell death in rat hippocampus organotypic slice cultures. Neonatology, 114(4): 364–371. Carrasco C, Rodriguez A B, Pariente J A. 2015. Melatonin as a stabilizer of mitochondrial function: role in diseases and aging. Turkish Journal of Biology, 39(6): 822–831. Chang H M, Wu U I, Lan C T. 2009. Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. Journal of Pineal Research, 47(3): 211–220. Cipolla-Neto J, Amaral F G. 2018. Melatonin as a hormone: new physiological and clinical insights. Endocrine Reviews, 39(6): 990–1028. Cipolla-Neto J, Amaral F G, Afeche S C, et al. 2014. Melatonin, energy metabolism, and obesity: a review. Journal of Pineal Research, 56(4): 371–381. Fernández-Vázquez G, Reiter R J, Agil A. 2018. Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control. Journal of Pineal Research, 64(4): e12472. Finkel T, Holbrook N J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809): 239. Galano A, Medina M E, Tan D X, et al. 2015. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. Journal of Pineal Research, 58(1): 107–116. Gao T, Wang Z X, Dong Y L, et al. 2019. Role of melatonin in sleep deprivation‐induced intestinal barrier dysfunction in mice. Journal of Pineal Research, 67(1): e12574. Green D R, Galluzzi L, Kroemer G. 2011. Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science, 333(6046): 1109–1112. Grubisic M, Haim A, Bhusal P, et al. 2019. Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. Sustainability, 11(22): 6400. Guo Y Y, Chi Q S, Zhang X Y, et al. 2019. Brown adipose tissue plays thermoregulatory role within the thermoneutral zone in Mongolian gerbils (Meriones unguiculatus). Journal of Thermal Biology, 81: 137–145. Gutierrez-Cuesta J, Tajes M, Jiménez A, et al. 2008. Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model. Journal of Pineal Research, 45(4): 497–505. Halpern B, Mancini M C, Bueno C, et al. 2019. Melatonin increases brown adipose tissue volume and activity in patients with melatonin deficiency: a proof-of-concept study. Diabetes, 68(5): 947–952. Hardeland R. 2017. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. Journal of Pineal Research, 62(1): e12377. Harman D. 1956. Aging: a theory based on free radical and radiation chemistry. Journals of Gerontology, 11(3): 298–300. He C, Wang J, Zhang Z, et al. 2016. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. International Journal of Molecular Sciences, 17(6): 939. Huo X K, Wang C, Yu Z L, et al. 2017. Human transporters, PEPT 1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. Journal of Pineal Research, 62(4): e12390. Jiménez-Aranda A, Fernández-Vázquez G, Campos D, et al. 2013. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. Journal of Pineal Research, 55(4): 416–423. Jung-Hynes B, Schmit T L, Reagan-Shaw S R, et al. 2011. Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. Journal of Pineal Research, 50(2): 140–149. Kauppila T E, Kauppila J H, Larsson N. 2017. Mammalian mitochondria and aging: an update. Cell Metabolism, 25(1): 57–71. Kubben N, Misteli T. 2017. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nature Reviews Molecular Cell Biology, 18(10): 595. Leheste J R, Torres G. 2015. Resveratrol: brain effects on SIRT1, GPR50 and photoperiodic signaling. Frontiers in Molecular Neuroscience, 8: 61. Liu D, Ma Z Q, Di S Y, et al. 2018. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radical Biology and Medicine, 129: 59–72. Majidinia M, Reiter R J, Shakouri S K, et al. 2018. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Research Reviews, 47: 198–213. Manini T M. 2010. Energy expenditure and aging. Ageing Research Reviews, 9(1): 1–11. Mattson M P. 2010. Perspective: does brown fat protect against diseases of aging? Ageing Research Reviews, 9(1): 69–76. McBride H M, Neuspiel M, Wasiak S. 2006. Mitochondria: more than just a powerhouse. Current Biology, 16(14): R551–R560. Monaghan P, Metcalfe N B, Torres R. 2009. Oxidative stress as a mediator of life history trade‐offs: mechanisms, measurements and interpretation. Ecology Letters, 12(1): 75–92. Moniruzzaman M, Ghosal I, Das D, et al. 2018. Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biological Research, 51(1): 17. Motta-Teixeira L C, Machado-Nils A V, Battagello D S, et al. 2018. The absence of maternal pineal melatonin rhythm during pregnancy and lactation impairs offspring physical growth, neurodevelopment, and behavior. Hormones and Behavior, 105: 146–156. Nohara K, Mallampalli V, Nemkov T, et al. 2019. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 10(1): 1–15. North B J, Verdin E. 2004. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology, 5(5): 224. Pérez-González A, Casta?eda-Arriaga R, álvarez-Idaboy J R, et al. 2019. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. Journal of Pineal Research, 66(2): e12539. Price N L, Gomes A P, Ling A J, et al. 2012. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism, 15(5): 675–690. Proietti S, Cucina A, Dobrowolny G, et al. 2014. Melatonin down-regulates MDM 2 gene expression and enhances p53 acetylation in MCF‐7 cells. Journal of Pineal Research, 57(1): 120–129. Proietti S, Cucina A, Minini M, et al. 2017. Melatonin, mitochondria, and the cancer cell. Cellular and Molecular Life Sciences, 74(21): 4015–4025. Reiter R J, Ma Q, Sharma R. 2020. Melatonin in Mitochondria: Mitigating Clear and Present Dangers. Physiology (Bethesda), 35(2): 86–95. Reiter R J, Tan D X, Galano A. 2014. Melatonin: exceeding expectations. Physiology, 29(5): 325–333. Roberts S B, Rosenberg I. 2006. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiological Reviews, 86(2): 651–667. Roenneberg T, Allebrandt K V, Merrow M, et al. 2012. Social jetlag and obesity. Current Biology, 22(10): 939–943. Suofu Y, Li W, Jean-Alphonse F G, et al. 2017. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences, 114(38): E7997–E8006. Tajes M, Gutierrez Cuesta J, Ortuno-Sahagun D, et al. 2009. Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. Journal of Pineal Research, 47(3): 228–237. Tan D X, Manchester L C, Qin L L, et al. 2016. Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. International Journal of Molecular Sciences, 17(12): 2124. Tan D X, Manchester L C, Esteban-Zubero E, et al. 2015. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules, 20(10): 18886–18906. Tarocco A, Caroccia N, Morciano G, et al. 2019. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death and Disease, 10(4): 317. Vara-Ciruelos D, Russell F M, Hardie D G. 2019. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? Open Biology, 9(7): 190099. Verma A K, Singh S, Rizvi S I. 2019. Redox homeostasis in a rodent model of circadian disruption: Effect of melatonin supplementation. General and Comparative Endocrinology, 280: 97–103. Vriend J, Reiter R J. 2015. Melatonin feedback on clock genes: a theory involving the proteasome. Journal of Pineal Research, 58(1): 1–11. Wang X N, Xue G X, Liu W C, et al. 2017. Melatonin alleviates lipopolysaccharide-compromised integrity of blood–brain barrier through activating AMP‐activated protein kinase in old mice. Aging Cell, 16(2): 414–421. Xu Y C, Yang D B, Speakman J R, et al. 2014. Oxidative stress in response to natural and experimentally elevated reproductive effort is tissue dependent. Functional Ecology, 28(2): 402–410. Zanuto R, Siqueira-Filho M A, Caperuto L C, et al. 2013. Melatonin improves insulin sensitivity independently of weight loss in old obese rats. Journal of Pineal Research, 55(2): 156–165. Zhao D K, Yu Y, Shen Y, et al. 2019. Melatonin synthesis and function: evolutionary history in animals and plants. Frontiers in Endocrinology, 10: 249. Zhao Z J, Wang D H. 2009. Plasticity in the physiological energetics of Mongolian gerbils is associated with diet quality. Physiological and Biochemical Zoology, 82(5): 504–515. 刘新宇, 潘茜, 王德华. 2014. 年龄对布氏田鼠和长爪沙鼠能量代谢的影响. 中国科学: 生命科学, 44(9): 920–928. 宋康, 白振忠, 格日力. 2019. AMPK调控能量代谢及线粒体稳态. 生理科学进展, 50(6): 447–451. 姚蔚, 王德华, 张学英. 2017. 光周期不参与长爪沙鼠的能量调节. 中国科学: 生命科学, 47(10): 1090–1098.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高文婷,孙海基,王德华,张学英.2020.褪黑素延缓哺乳动物衰老的作用 及其机制的研究进展.动物学杂志,55(6):797-805.

复制
文章指标
  • 点击次数:1068
  • 下载次数: 2294
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-27
  • 最后修改日期:2020-10-27
  • 录用日期:2020-10-26
  • 在线发布日期: 2020-12-08