丝光椋鸟的代谢产热特征及体温调节的日周期变化
作者:
基金项目:

国家自然科学基金项目(No. 31070366);浙江省新苗人才计划项目(No. 2009R424023)


Daily Cyclic Variation of Metabolism and Thermoregulation in the Silky Starling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探讨丝光椋鸟(Sturnus sericeus)代谢产热特征及体温调节的日周期变化,本研究采用开放式氧气分析仪及数字式温度计,测定了丝光椋鸟24 h体温、体重(Mb)和基础代谢率(BMR)的连续变化。结果显示,丝光椋鸟体温、体重及代谢率的日周期变化存在显著差异。丝光椋鸟夜间体温明显低于白昼,其中体温在凌晨5时降至(40.4±0.1)℃;体重昼夜变化明显,且在20:00~次日6:00时雌雄丝光椋鸟体重的下降与时间分别存在明显的线性关系,雌性为 Mb=83.46(±0.12)-0.41(±0.02)t(R2=0.992,P<0.01);雄性为 Mb=76.74(±0.15)-0.39(±0.02)t(R2=0.986,P<0.01)(式中的t代表时间)。丝光椋鸟的BMR在凌晨4时降至最低,为(1.96±0.06)ml/(g·h)。结果表明,丝光椋鸟通过内源性的调节,即夜间降低体温、体重及代谢率等途径,调节生理能量平衡,从而适应昼夜环境变化。

    Abstract:

    In order to explain the daily cyclic variation of metabolism and thermoregulation in the Silky Starling (Sturnus sericeus), the 24 hours continuous changes of body temperature (Tb), body mass (Mb) and basal metabolic rate (BMR) in silky starling were measured. Tb was determined by a digital thermometer (Beijing Normal University Instruments Co., model TH-212) inserting to cloaca, Mb was measured by an electronic scale (Mettler-Toledo, model PL3001-S) to the nearest 0.1 g, and BMR was measured by an open oxygen analyzer (AEI, model S-3A/I) temperature controlled at 25±0.5℃, respectively. The results showed that daily variation of Tb, Mb and BMR was great significantly. Both of Tb and Mb were significantly lower and varied greatly in night time than those in day time. The lowest Tb was 40.4±0.1℃ at 5 o’clock. The value of Mb showed a obvious linear variation with time during 20:00-6:00, and the relationship of Mb in female was Mb=83.46 (±0.12)-0.41 (±0.02) t (R2=0.992, P<0.01) and in male was Mb=76.74 (±0.15)-0.39 (±0.02) t (R2=0.986, P<0.01), respectively. The lowest BMR was (1.96±0.06) ml/(g·h) at 4 o’clock. In summary, silky starling could adjust their daily cyclic variation by decrease Tb, Mb and BMR at night. This inner physiological energetic regulation mechanism improved their acclimatization to the diurnal environment variation.

    参考文献
    AL-Mansour M I. 2004. Seasonal variation in basal metabolic rate and body composition within individual sanderling bird Calidris alba. Journal of Biological Sciences, 4(4): 564-567.
    Ashoff J. 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase.Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 69(4): 611-619.
    Bartholomew G A, Howell T R, Cade T J. 1957. Torpidity in the white-throated swift, Anna hummingbird, and poor-will. The Condor, 59(3): 145-155.
    Bartholomew G A,Vleck C M, Bucher T L. 1983. Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis. Physiological Zoology, 56(3): 370-379.
    Bech C, Abe A S, Steffensen J F, et al. 1997. Torpor in three species of Brazilian hummingbirds undersemi-natural conditions. The Condor, 99(3): 780-788.
    Brigham R M, Körtner G, Maddocks T A, et al. 2000. Seasonal use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Physiological and Biochemical Zoology, 73(5): 613-620.
    Burton C T, Weathers W W. 2003. Energetics and thermoregulation of the Gouldian Finch (Erythrura gouldiae). Emu, 103(1): 1-10.
    Butler P J, Woakes A J. 2001. Seasonal hypothermia in a large migrating bird: saving energy for fat deposition? Journal of Experimental Biology, 204(7): 1361-1367.
    Calder W A, Booser J. 1973. Hypothermia of broad-tailed hummingbirds during incubation in nature with ecological correlations. Science, 180(4087): 751-753.
    Cuthill I C, Hunt S, Cleary C, et al. 1997. Color bands, dominance and body mass regulation in male zebra finches(Taeniopygia guttata). Proceedings of the Royal Society B: Biological Sciences, 267(1384): 1093-1099.
    Doucette L I, Geiser F. 2008.Seasonal variation in thermal energetics of the Australian owlet-nightjar (Aegotheles Cristatus). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 151(4): 615-620.
    Gillooly J F, Brown J H, West G B, et al. 2001. Effects of size and temperature on metabolic rate. Science, 293(5538): 2248-2251.
    Hill R W. 1972. Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. Journal of Applied Physiology, 33(2): 261-263.
    Hirons G J M, Hardy A R,Stanley P I. 1984. Body weight, gonad development and moult in the Tawny owl (Strix alum). Journal of Zoology, 202(2): 145-164.
    Houston A I, McNamara J M, Hutchinson J M C. 1993. General results concerning the trade-off between gaining energy and avoiding predation. Philosophical Transactions of the Royal Society B: Biological Sciences, 341(1298): 375-397.
    Hurly T A. 1992. Energetic reserves of marsh tits (Parus palustris): food and fat storage in response to variable food supply. Behavioral Ecology, 3(2): 181-188.
    Kontogiannis J E. 1967. Day and night changes in body weight of the white-throated sparrow, Zonotrichia albicollis. The Auk, 84(3): 390-395.
    Körtner G, Brigham R M, Geiser F. 2000. Winter torpor in a large bird. Nature, 407(6802): 318.
    Ksiażek A, Konarzewski M, Łapo I B. 2004.Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiological and Biochemical Zoology, 77(6): 890-899.
    Lindsay C V,Downs C T, Brown M. 2009a. Physiological variation in amethyst sunbirds (Chalcomitra amethystina) over an altitudinal gradient in summer. Journal of Thermal Biology, 34(4): 190-199.
    Lindsay C V,Downs C T, Brown M. 2009b. Physiological variation in Amethyst Sunbirds (Chalcomitra amethystina) over an altitudinal gradient in winter. Journal of Experimental Biology, 212(4): 483-493.
    Liu J S, Wang D H, Wang Y, et al. 2004. Energetics and thermoregulation of the Carpodacus roseus, Fringilla montifringilla and Acanthis flammea. Acta Zoologica Sinica, 50(3): 357-363.
    Liu J S, Wang D H, Sun R Y. 2005. Climatic adaptations in metabolism of four species of small birds in China. Acta Zoologica Sinica, 51(1): 24-30.
    Lovegrove B G. 2003. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. Journal of Comparative Physiology: B, 173(2): 87-112.
    MacKinnon J, Phillipps K. 2000. A Field Guide to the Birds of China. Oxford: Oxford University Press, 265-501.
    Macleod R, Barnett P,Clark J A, et al. 2005. Body mass change strategies in blackbirds Turdus merula: the starvation-predation risk trade-off. Journal of Animal Ecology, 74(2): 292-302.
    Marschall U, Prinzinger R. 1991. Vergleichende ökophysiologie von fünf prachtfinkenarten (Estrildidae). Journal of Ornithology, 132(3): 319-323.
    McKechnie A E, Chetty K, Lovegrove B G.2007. Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation. Journal of Experimental Biology, 210(1): 97-106.
    McKechnie A E, Lovegrove B G. 2002. Avian facultative hypothermic responses: a review. The Condor, 104(4): 705-724.
    McNab B K. 2006.The relationship among flow rate, chamber volume and calculated rate of metabolism in vertebrate respirometry. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 145(3): 287-294.
    McNab B K. 2009. Ecological factors affect the level and scaling of avian BMR. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 152(1): 22-45.
    Merola-Zwartjes M, Ligon J D. 2000. Ecological energetics of the Puerto Rican Tody: heterothermy, torpor and intra-island variation. Ecology, 81(4): 990-1002.
    Newton I, Marquiss M, Village A. 1983. Weights, breeding, and survival in European Sparrow hawks. The Auk, 100(2): 344-354.
    Pravosudov V V, Grubb T C Jr. 1997.Energy management in passerine birds during the nonbreeding season: A review//Val N J, Ellen K D, Charles T F. Current Ornithology, 14. Berlin: Springer, 189-234.
    Prinzinger R, Preβmar A, Schleucher E. 1991. Body temperature in Birds. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 99(4): 499-506.
    Prinzinger R, Siedle K. 1988. Ontogeny of metabolism, thermoregulation and torpor in the House Martin Delichon u. urbica (L.) and its ecological significance. Oecologia, 76(2): 307-312.
    Reinertsen R E, Haftorn S. 1986.Different metabolic strategies of northern birds for nocturnal survival. Journal of Comparative Physiology: B, 156(5): 655-663.
    Soobramoney S, Downs C T, Adams N J. 2003. Physiological variability in the Fiscal Shrike Lanius collaris along an altitudinal gradient in South Africa. Journal of Thermal Biology, 28(8): 581-594.
    Swanson D L. 1991. Seasonal adjustments in metabolism and insulation in theDark-eyed Junco. The Condor, 93(3): 538-545.
    Thouzeau C, Duchamp C, Handrich Y. 1999. Energy metabolism and body temperature of barn owls fasting in the cold. Physiological and Biochemical Zoology, 72(2): 170-178.
    Waite T A. 1991. Nocturnal hypothermia in gray jays Perisoreus canadensis wintering in interior Alaska. Ornis Scandinavica, 22(2): 107-110.
    Wiersma P, Muñoz-Garcia A, Walker A, et al. 2007. Tropical birds have a slow pace of life. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9340-9345.
    Witter M S, Swaddle J P, Cuthill I C. 1995. Periodic food availability and strategic regulation of body mass in the European starling,Sturnus vulgaris. Functional Ecology, 9(4): 568-574.
    Zhang Y P, Liu J S, Hu X J, et al. 2006. Metabolism and thermoregulation in two species of passerines from south-eastern China in summer. Acta Zoologica Sinica, 52(4): 641-647.
    Zheng W H, Li M, Liu J S, et al.2008a. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 151(4): 519-525.
    Zheng W H, Liu J S, Jiang X H, et al. 2008b. Seasonal variation on metabolism and thermoregulation in Chinese bulbul. Journal of Thermal Biology, 33(6): 315-319.
    李铭, 柳劲松, 韩宏磊, 等. 2005. 太平鸟和灰头鹀的代谢产热特征及体温调节. 动物学研究, 26(3): 287-293.
    柳劲松, 李铭, 邵淑丽. 2008. 树麻雀肝脏和肌肉产热特征的季节性变化. 动物学报, 54(5): 777-784.
    张国凯, 方媛媛, 姜雪华, 等. 2008. 白头鹎的代谢率与器官重量在季节驯化中的可塑性变化. 动物学杂志, 43(4): 13-19.
    郑蔚虹, 方媛媛, 姜雪华, 等. 2010. 白头鹎肝脏和肌肉冬夏两季的代谢产热特征比较. 动物学研究, 31(3): 319-327.
    周围, 王玉萍, 陈德汉, 等. 1010. 白头鹎体温、体重及能量代谢的昼夜节律. 生态学杂志, 29(12): 2395-2400.
    引证文献
引用本文

赵磊,郑立云,张伟,黄迪飞,徐云,柳劲松.2013.丝光椋鸟的代谢产热特征及体温调节的日周期变化.动物学杂志,48(2):269-277,280.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-09-06
  • 最后修改日期:2013-01-13
  • 在线发布日期: 2013-04-15