陕西汉中朱鹮在输电铁塔上的 营巢状况及保护建议
作者:
作者单位:

1.陕西汉中朱鹮国家级自然保护区管理局 洋县 723300;2.中国林业科学研究院森林生态环境与保护研究所,国家林业和草原局森林保护学重点实验室 北京 100091

基金项目:

中国林业科学研究院森林生态环境与保护研究所科研发展专项(No. 99811-2020),国家林业和草原局野生动植物保护专项(No. 2130211-19-408/090)


Status of Pylon-nesting of Crested Ibis (Nipponia nippon) with Conservation Suggestions in Hanzhong of Shaanxi Province, China
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着高压输电线路的日益增多,鸟类在输电铁塔上的营巢现象日益普遍,其在鸟类保护中的作用以及对输电线路的影响是备受关注的课题。自2018年首次在陕西省汉中市西乡县发现野生朱鹮(Nipponia nippon)在高压输电铁塔上营巢以来,至2020年累计在4个铁塔上统计到7个营巢记录。铁塔巢址通常比树巢更高[(16.3 ± 7.2)m,n = 4],距离干扰源如机动车道[(140 ± 66)m,n = 4]和居民点[(162 ± 95)m,n = 4]较近,距离觅食稻田较远[(235 ± 79)m,n = 4]。铁塔巢址的繁殖生产力为2.3 ± 0.5(n = 6),显著高于树巢,其原因可能是铁塔巢址较为稳固,不易被大风损毁,且天敌危害较少。由于铁塔巢址周边适于营巢的乔木较多,因而这种异常的营巢现象并非源于天然营巢树木的缺乏。对1只铁塔巢址出生的个体进行了卫星跟踪,表明其第1年的扩散距离为2.0 km,小于树巢出生的个体,而且其活动核心区覆盖了巢址和3条输电线路;第2和第3年的活动核心区分别向外扩散15.5 km和15.3 km,但夏季仍有约1个月的时间返回出生巢址附近。可见这些个体对铁塔和输电线路这种特殊的出生地有较深的印记,今后选择在铁塔上营巢的可能性较高。根据近年来朱鹮在铁塔上的营巢记录和巢址的重复使用情况,我们认为这一异常营巢行为并非偶然个例,今后会有逐年增加的趋势,可能会对电网安全造成潜在风险。2018年的一个铁塔巢址造成输电线路的跳闸后,幼鸟被成功转移至旁边弃用的喜鹊(Pica pica)巢中并顺利出飞,这为类似情况的应对处理提供了可行的参考。此外,建议在野生朱鹮分布区的高压输电铁塔的安全位置安装人工栖架和人工巢筐,既可以满足朱鹮的繁殖需求,又能减少对输电线路的危害。

    Abstract:

    As the increasing of power transmission lines, pylon-nesting is widespread all over the world, resulting in major concern on its contribution on bird conservation and the adverse impacts on power grid. In this paper, we investigated the pylon-nesting performance of the endangered Crested Ibis (Nipponia nippon) in Shaanxi Province, China. We also analyzed the impacts of pylon-nesting on the post-juvenile movement as revealed by GPS tracking, and presented suggestions to improve the safety of pylon-nesting birds and power grid. Since the first pylon-nesting of Crested Ibis discovered in Xixiang County of Shaanxi Province in 2018, a total of 7 pylon-nesting attempts on 4 pylons have been recorded till 2020 (Table 1, Fig. 1, Fig. 2a, b). Compared to tree-nests, pylon-nests were relatively higher (16.3 ± 7.2 m, n = 4), closer to human disturbance, such as motorway (140 ± 66 m, n = 4) and settlements (162 ± 95 m, n = 4), and farther from paddy fields (235 ± 79 m, n = 4), the dominating feeding habitat. The breeding productivity of pylon-nests averaged 2.33 ± 0.52 (n = 6), much higher than that of tree-nests. It is probably because pylon-nests are more resistant to strong wind and less accessible for natural enemies such as Siberian Weasel (Mustela sibirica) and snakes (Fig. 2e). Given there were many unoccupied nesting trees available nearby, we suggest the pylon-nesting of Crested Ibis is not derived from competition of limited natural nesting resources. GPS tracking of one pylon-nest born individual revealed a much shorter post-juvenile dispersal distance (2.0 km) than that of tree-nest born individuals, and the core home range in the first year covered the natal site and three power lines (Fig. 3); In the second and third year, although the bird made significant dispersal (15.5 km and 15.3 km, respectively), it still regularly returned to natal site and stayed nearly one month during summer. This indicated a deep imprint of the pylon-nest born Crested Ibis on its special natal habitat and might consequently leading to a higher possibility of nesting on pylon in the future. Based on the pylon-nesting records and the high reuse rate of pylon-nests during 2018﹣2020, we suggest pylon-nesting of Crested Ibis is not an occasional phenomenon, and might increase by year in the future and cause potential risk on the power grid security. The pylon-nesting of Crested Ibis once caused short circuit in May 2018, and the nestlings were successfully moved to an abandoned nest of Common Magpie (Pica pica) on the same pylon (Fig. 2b﹣d) and fledged later, which provided a feasible conservation measure. We also suggest to install perching frames and artificial nests on pylon beneath power line so as to both provide safety nest sites for Crested Ibis and reduce the damage to power line.

    参考文献
    Bevanger K. 1998. Biological and conservation aspects of bird mortality caused by electricity power lines: a review. Biology Conservation, 86(1): 67–76. Fernie K J, Reynolds S J. 2005. The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: a review. Journal of Toxicology & Environmental Health Part B: Critical Reviews, 8(2): 127–140. Frazier S D. 2001. Birds, Substations, and Transmission // IEEE. Power Engineering Society Winter Meeting Conference Proceedings. Columbus: IEEE, 355-358. Guo W Y. 2006. Preventing measures of bird interference with transmission lines and substation equipment in US. Electric Power, 39(8): 82–84. Harness R E, Juwadi P R. 2015. Preventing bird electrocutions: alternative construction methods could help birds and utilities. IEEE Industry Applications Magazine, 21(3): 22–26. Liu D, Zhang G, Wang C, et al. 2020. Breeding variation in a reintroduced Crested Ibis Nipponia nippon population in central China. Pakistan Journal of Zoology, 52(4): 1595–1598. Loss S R, Will T, Marra P P. 2014. Refining estimates of bird collision and electrocution mortality at power lines in the United States. PLoS One, 9(7): e101565. doi:10.1371/journal.pone. 0101565. Meyburg B U, Manowsky O, Meyburg C. 1996. The Osprey in Germany: its adaptation to environments altered by man // Mird D M, Varland D E, Negro J. Raptors in Human Landscapes. London: Academic Press, 125–135. Sokolov L, Chernetsov N, Kosarev V, et al. 2004. Spatial distribution of breeding Pied Flycatchers Ficedula hypoleuca in respect to their natal sites. Animal Biodiversity & Conservation, 27(1): 355–356. Tryjanowski P, Sparks T H, Jerzak L, et al. 2014. A paradox for conservation: electricity pylons may benefit avian diversity in intensive farmland. Conservation Letters, 7(1): 34–40. Yu X, Liu N, Xi Y, et al. 2006. Reproductive success of the Crested Ibis Nipponia nippon. Bird Conservation International, 16(4): 325–343. Yu X, Xi Y, Lu B, et al. 2010. Postfledging and natal dispersal of Crested Ibis in the Qinling Mountains, China. 2010. The Wilson Journal of Ornithology, 122(2): 228-235. 丁长青. 2004. 朱鹮研究. 上海: 上海科技教育出版社, 47–53. 何芬奇, 田秀华, 于海玲, 等. 2008. 略论东方白鹳的繁殖分布区域的扩展. 动物学杂志, 43(6): 154–157. 侯银续, 周立志, 杨陈, 等. 2007. 越冬地东方白鹳的繁殖干扰. 动物学研究, 28(4): 344–352. 李进荣, 黄洪辉, 顾浩, 等. 2014. 输电线路鸟巢故障分析及防范措施. 中国高新技术企业, 21(28): 145–147. 刘冬平. 2002. 朱鹮(Nipponia nippon)的栖息地需求与再引入的初步研究. 北京: 中国林业科学研究院硕士学位论文, 19–32. 师飘. 2017. 输电线路上鸟巢的监测算法研究. 北京: 北京交通大学硕士学位论文, 1–4.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王超,闫鲁,高洁,曾键文,刘冬平.2020.陕西汉中朱鹮在输电铁塔上的 营巢状况及保护建议.动物学杂志,55(6):712-719.

复制
文章指标
  • 点击次数:1439
  • 下载次数: 1372
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-06-22
  • 最后修改日期:2020-10-28
  • 录用日期:2020-10-26
  • 在线发布日期: 2020-12-08