营巢植物影响红头长尾山雀的巢被捕食风险
作者:
作者单位:

1.河南董寨国家级自然保护区管理局 罗山 464236;2.北京林业大学生态与自然保护学院 北京 100083

作者简介:

朱家贵,男,高级工程师;研究方向:野生动植物保护与利用;E-mail:dzzjg_2022@163.com。

中图分类号:

Q958

基金项目:

国家自然科学基金项目(No. 31970421,31472011);


Nesting Plant Affects the Nest Predation Risk of the Black-Throated Tit Aegithalos concinnus
Author:
Affiliation:

1.Ministration Bureau of Dongzhai National Nature Reserve, Luoshan 464236;2.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    巢址选择对鸟类的巢捕食率具有重要影响,研究鸟类的巢址特征与巢捕食率之间的关系有利于揭示不同巢址特征对鸟类成功繁殖的作用。本研究以2014至2017年在河南董寨国家级自然保护区观察的红头长尾山雀(Aegithalos concinnus)为研究对象,分析了红头长尾山雀在卵期(产卵及孵卵期)(n = 124巢)及育雏期(n = 119巢)被捕食巢和成功巢的日存活率与发现巢的时间和营巢植物种类之间的关系,同时还根据其巢址的总体特征对其巢址安全性进行评级,以探究研究者评估的巢址安全等级对预测巢存活率的有效性。结果显示:在卵期,营巢于竹类植物(如箬竹Indocalamus tessellatus和刚竹属Phyllostachys sp.植物)、茶(Camellia sinensis)、灌草类植物(如蔷薇Rosa spp.和禾本科Gramineae植物)和杉木(Cunninghamia lanceolata)上的红头长尾山雀巢的日存活率皆显著高于在松柏类植物(如油松Pinus massoniana、侧柏Platycladus orientalis和圆柏Juniperus chinensis)上的巢;在育雏期,营巢于灌草类植物上巢的日存活率显著低于竹类、杉木和茶树上巢的日存活率。卵期巢的日存活率随巢日龄的增加而显著降低,但育雏期巢的日存活率不随巢日龄显著变化。此外,巢的日存活率与发现巢的日期之间没有显著关系,研究者评估为巢址安全等级不同的巢,其日存活率也无显著差异。综上所述,本研究的结果表明,营巢于某些特定植物有助于降低红头长尾山雀面临的巢捕食风险,说明营巢植物种类对鸟类的繁殖成功率具有重要影响。

    Abstract:

    [Objectives] The nest predation of birds is often affected by nest-site selection. Studying the relationship between nest site and nest predation rate may help to reveal the role of different nest site characteristics in the successful reproduction of birds. [Methods] Using Black-throated Tit (Aegithalos concinnus) nests that were predated and those succeeded in the Dongzhai National Nature Reserve of Henan province from 2014 to 2017 as our study subjects, we investigated the relationship of daily nest survival rate with the found date of nest, and nesting plants by using nest survival analysis with RMark (a R package that provides a formula-based interface for the program MARK). We also assessed their nest-site safety class based on nest-site characteristics and examined whether researchers’ assessment of nest-site safety class could predict daily nest survival rate. Because nest predation might differ between different breeding stages, the egg stage (egg-laying and incubation stage; 124 nests) and nestling stage (119 nests) were analyzed separately. [Results] Daily nest survival rate decreased significantly with increasing nest age at the egg stage (Fig. 1, Table 2), but no significant relationship between nest age and nest survival rate existed in nestling stage (Table 3). In addition, daily nest survival rate did not change with the found dates of the nests and nest safety levels (Table 2, Table 3). However, at the egg stage, the nests built on bamboos (Indocalamus tessellatus, Phyllostachys sp.), Chinese firs (Cunninghamia lanceolate), bushes and grasses (e.g. Rosa spp.) and teas (Camellia sinensis) had a significantly higher daily nest survival rate than those built on cypress (Platycladus orientalis, Juniperus chinensis) and pine trees (Pinus massoniana) (Fig. 2a, Table 2). Furthermore, at the nestling stage, the nests built on bushes and grasses had a significantly lower daily nest survival rate than those built on teas, Chinese firs and bamboos (Fig. 2b, Table 3). [Conclusion] Our results suggest that nesting on certain plants may reduce the nest predation risk of the Black-throated Tit, highlighting the role of nesting plants in influencing the breeding success of birds.

    参考文献
    Bartoń K. 2019. Package MuMIn. R package version 1.43.6. [R/OL]. [2019-10-27]. https://CRAN.R-project.org/package=MuMIn.
    Bonnot T W, Rumble M A, Millspaugh J J. 2008. Nest success of Black-backed Woodpeckers in forests with mountain pine beetle outbreaks in the Black Hills, South Dakota. The Condor, 110(3):450–457.
    Borgmann K L, Conway C J. 2015. The nest-concealment hypothesis:New insights from a comparative analysis. Wilson Journal of Ornithology, 127(4):646–660.
    Buehler R, Bosco L, Arlettaz R, et al. 2017. Nest site preferences of the Woodlark (Lullula arborea) and its association with artificial nest predation. Acta Oecologica, 78:41–46.
    Dinsmore S J, Dinsmore J J. 2007. Modeling avian nest survival in program MARK. Studies in Avian Biology, 34:73–83.
    G?tmark F. 1992. The effects of investigator disturbance on nesting birds // Power D M. Current Ornithology. Boston:Springer, 63–104.
    Grant T A, Shaffer T L, Madden E M, et al. 2005. Time-specific variation in passerine nest survival:New insights into old questions. Auk, 122(2):661–72.
    Guan H, Wen Y, Wang P, et al. 2018. Seasonal increase of nest height of the Silver-throated Tit (Aegithalos glaucogularis):Can it reduce predation risk? Avian Research, 9(4):306–313.
    Guilherme J L, Burnside R J, Collar N J, et al. 2018. Consistent nest-site selection across habitats increases fitness in Asian Houbara. The Auk, 135(2):192–205.
    Higgott C G, Evans K L, Hatchwell B J. 2020. Incubation in a temperate passerine:Do environmental conditions affect incubation period duration and hatching success? Frontiers in Ecology and Evolution, 8:542179.
    Hu Q, Wen Y, Yu G, et al. 2020. Research activity does not affect nest predation rates of the Silver-throated Tit, a passerine bird building domed nests. Avian Research, 11(1):1–10.
    Ibá?ez-álamo J D, Sanllorente O, Soler M. 2012. The impact of researcher disturbance on nest predation rates:A meta-analysis. Ibis, 154(1):5–14.
    John A, Weisberg S, Price B,et al. 2019. Car:Companion to Applied Regression. R package version 3.1-0. [R/OL]. [2022-07-27]. https://CRAN.R-project.org/package=car.
    Laake J L. 2013. RMark:An R Interface for Analysis of Capture- Recapture Data with MARK. Seattle:National Marine Mammal Laboratory, Alaska Fisheries Science Center.
    Laake J L, Rexstad E. 2022. R code for MARK analysis. R package version 3.0.0. [R/OL]. [2022-08-24]. https://CRAN.R-project.org/ package=RMark.
    Li J, Lv L, Wang Y, et al. 2012. Breeding biology of two sympatric Aegithalos tits with helpers at the nest. Journal of Ornithology, 153(2):273–283.
    Liu J, Yan H, Li G, et al. 2021. Nest concealment is associated with reproductive traits across sympatric bird species. Ecology and Evolution, 11(20):14079–14087.
    Lundblad C G, Conway C J, 2021. Intraspecific variation in incubation behaviours along a latitudinal gradient is driven by nest microclimate and selection on neonate quality. Functional Ecology, 35(5):1028–1040.
    Martin T E. 1993. Nest predation and nest sites:New perspectives on old patterns. BioScience, 43(8):523–532.
    Martin T E, Roper J J. 1988. Nest predation and nest-site selection of a western population of the Hermit Thrush. The Condor, 90(1):51–57.
    Martin T E, Scott J, Menge C. 2000. Nest predation increases with parental activity:Separating nest site and parental activity effects. Proceedings of the Royal Society B:Biological Sciences, 267(1459):2287–2293.
    McConnell M D, Monroe A P, Burger L W, et al. 2017. Timing of nest vegetation measurement may obscure adaptive significance of nest-site characteristics:A simulation study. Ecology and Evolution, 7(4):1259–1270.
    McDonald P G, Wilson D R, Evans C S. 2009. Nestling begging increases predation risk, regardless of spectral characteristics or avian mobbing. Behavioral Ecology, 20(4):821–829.
    Murray L D, Best L B. 2014. Nest-site selection and reproductive success of Common Yellowthroats in managed Iowa grasslands. The Condor, 116(1):74–83.
    R Development Core Team. 2022. R:A language and environment for statistical computing version 4.1.3 Vienna, Austria:R Foundation for Statistical Computing. [R/OL]. [2022-04-28]. https://www.r-project.org/.
    Redondo T, Carranza J. 1989. Offspring reproductive value and nest defense in the Magpie (Pica pica). Behavioral Ecology and Sociobiology, 25(5):369–378.
    Ringelman K M, Skaggs C G. 2019. Vegetation phenology and nest survival:Diagnosing heterogeneous effects through time. Ecology and Evolution, 9(4):2121–2130.
    Seibold S, Hempel A, Piehl S, et al. 2013. Forest vegetation structure has more influence on predation risk of artificial ground nests than human activities. Basic and Applied Ecology, 14(8):687–693.
    Touihri M, Charfi F, Villard M A. 2017. Effects of landscape composition and native oak forest configuration on cavity- nesting birds of North Africa. Forest Ecology and Management, 385:198–205.
    White G C, Burnham K P. 1999. Program MARK:Survival estimation from populations of marked animals. Bird Study, 46:120–139.
    Yeldell N A, Cohen B S, Little A R, et al. 2017. Nest site selection and nest survival of eastern wild turkeys in a pyric landscape. Journal of Wildlife Management, 81(6):1073–1083.
    Zhao J M, Yang C, Lou Y Q, et al. 2020. Nesting season, nest age, and disturbance, but not habitat characteristics, affect nest survival of Chinese Grouse. Current Zoology, 66(1):29–37.
    郭贵云, 周友兵, 张君, 等. 2006. 四川南充市区红头长尾山雀的巢址选择、繁殖习性与帮手行为. 动物学杂志, 41(6):29–35.
    李乐, 万冬梅, 刘鹤, 等. 2011. 人工巢箱条件下杂色山雀的巢位选择及其对繁殖成功率的影响. 生态学报, 31(24):7492–7499.
    施丽敏, 刘迺发, 丁未, 等. 2012. 荒漠伯劳巢址选择和繁殖成功. 动物学杂志, 47(6):7–13.
    岩道, 韩联宪, 邓章文, 等. 2012. 紫溪山红头长尾山雀巢址选择及巢卵特征. 西南林业大学学报, 32(6):78–82.
    张雷, 张海旺, 王娟, 等. 2020. 东北地区北红尾鸲巢址选择及繁殖成效. 生态学报, 40(1):70–76.
    相似文献
    引证文献
引用本文

朱家贵,黄涛,杜志勇,胡骞,李建强.2023.营巢植物影响红头长尾山雀的巢被捕食风险.动物学杂志,58(3):330-339.

复制
文章指标
  • 点击次数:169
  • 下载次数: 1156
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-09
  • 在线发布日期: 2023-06-16