基于高通量测序的厚唇裸重唇鱼微卫星分子标记筛选
作者:
作者单位:

1.四川大学生命科学学院,生物资源与生态环境教育部重点实验室 成都 610065;2.甘肃省水产科学研究所,甘肃省冷水性鱼类种质资源与遗传育种重点实验室 兰州 730030;3.四川大学自然博物馆 成都 610065;4.四川大学生命科学学院,长江上游鱼类资源与环境四川省野外科学观测研究站 成都 610065

作者简介:

刘峰林,男,硕士研究生;研究方向:保护遗传学;E-mail:851404480@qq.com。


Isolation and Characterization of Microsatellite Loci for Gymnodiptychus pachycheilus by Illumina HiSeq Sequencing
Author:
Affiliation:

1.Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065; 2.Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fisheries and Science Research Institute, Lanzhou 730030; 3.Museum of Natural History, Sichuan University, Chengdu 610065; 4.Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究对厚唇裸重唇鱼(Gymnodiptychus pachycheilus)基因组进行Illumina HiSeq高通量测序,共获得85 905条序列,包含567 200个微卫星位点,从中筛选出15个微卫星位点,采用雅砻江新龙种群和黄河渭河种群对其多态性进行了验证。新龙种群中,15个位点的平均等位基因数为6.9(3 ~ 13),观测杂合度(Ho)为0.712 4,多态信息含量(PIC)为0.630 3,有8个位点显著偏离哈迪-温伯格平衡,1对位点表现出连锁。渭河种群中,15个位点的平均等位基因数为8.4(4 ~ 16),观测杂合度(Ho)为0.719 5,多态信息含量(PIC)为0.680 7,有7个位点显著偏离了哈迪-温伯格平衡,4对位点表现出连锁。筛选获得的15个微卫星位点多态性较高,适合用于厚唇裸重唇鱼种群遗传学研究。

    Abstract:

    [Objectives] Microsatellite markers have been widely used in the research of conservation genetics of aquatic animals. However, there is no report on microsatellite loci of Gymnodiptychus pachycheilus. [Methods] From 2014 to 2022, a total of 2 G. pachycheilus populations (56 individuals) were collected from the main stream of the middle Yalong River and Weihe River. Illumina HiSeq sequencing was used to explore microsatellite markers from the genome of G. pachycheilus. Microsatellite loci were tested using 2 wild population samples’ DNA of G. pachycheilus. Null alleles were tested using the software MICRO-CHECKER version 2.2.3, genetic diversity statistics were obtained using AUTOTET. Deviations from Hardy-Weinberg equilibrium and linkage disequilibrium at each locus were calculated using GENEPOP 4.7.5, and significance values were adjusted after applying Bonferroni correction. Polymorphism information content (PIC) value was based on PIC_Calc0.6. [Results] 567 200 microsatellite loci were identified from 85 905 individual sequence reads produced, and 15 primer pairs were designed and testified in the Yalong River Xinlong population and the Weihe River population. In the Xinlong population, the average number of observed alleles per locus was 6.87 (from 3 to 13), the average observed heterozygosities and PIC were 0.712 4 and 0.630 3 respectively, 1 pair linkage disequilibrium was detected and eight loci showed significant deviation from Hardy-Weinberg equilibrium among the loci (Table 2). In the Weihe population, the average number of observed alleles per locus was 8.4 (from 4 to 16), the average observed heterozygosities and PIC were 0.719 5 and 0.680 7 respectively, 4 pairs linkage disequilibrium was detected and 7 loci showed significant deviation from Hardy-Weinberg equilibrium among the loci (Table 3). [Conclusion] These 15 high polymorphism microsatellite loci described for G. pachycheilus will be useful for future study on phylogeography and genetic diversity studies.

    参考文献
    Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15):2114–2120.
    Botstein D, White R L, Skolnick M, et al. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3):314.
    Fernández-Pérez J, Nantón A, Arias-Pérez A, et al. 2019. Fifteen novel microsatellite loci, developed using next-generation sequencing, reveal the lack of genetic structure in Donax vittatus from Iberian Peninsula. Estuarine, Coastal and Shelf Science, 21(7):218–225.
    González-Pérez M A, Lledó M D, Lexer C, et al. 2009. Genetic diversity and differentiation in natural and reintrouduced populations of Bencomia exstipulata and comparisons with B. caudate (Rosaceae) in the Canary Islands:an analysis using microsatellites. Botanical Journal of the Linnean Society, 160(4):429–441.
    Hoffman J I, Dasmahapatra K K, Amos W, et al. 2009. Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation. Molecular Ecology, 18(14):2961–2978.
    Hou F X, Zhang H B, Zhang X Y, et al. 2013. Characterization of microsatellite loci in Schizopygopsis chengi chengi and their utilization in assessment of the genetic diversity in Schizopygopsis chengi baoxingensis. Biochemical Systematics and Ecology, 46(1):50–54.
    Jin Y J, He K, Xiang P, et al. 2022. Temporal genetic variation of the Chinese Longsnout Catfish (Leiocassis longirostris) in the upper Yangtze River with resource decline. Environmental Biology of Fishes, 12(1):1–13.
    Julier B, Semiani Y, Laouar M. 2010. Genetic diversity in a collection of Lucerne populations from the Mediterranean Basin evaluated by SSR markers. Sustainable Use of Genetic Diversity in Forage and Turf Breeding, 14(1):107–112.
    Kalinowski S T. 2005. hp-rare 1.0:a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1):187–189.
    Kevin K S, Lee S L, Ueno S. 2009. Impact of selective logging on genetic diversity of two tropical tree species with contrasting breeding systems using direct comparison and simulation methods. Forest Ecology and Management, 25(7):107–116.
    Lei Y, Zhou Y, Price M, et al. 2021. Genome-wide characterization of microsatellite DNA in fishes:survey and analysis of their abundance and frequency in genome-specific regions. BMC Genomics, 22(1):1–22.
    Li W, Pan L, Que Y, et al. 2013. Isolation and characterization of 11 microsatellite loci in Schizothorax wangchiachii (Fang). Conservation Genetics Resources, 5(1):271–273.
    Liu B J, Zhang B D, Gao T X, et al. 2017. Signatures of temporal genetic differentiation of the Small Yellow Croaker (Larimichthys polyactis) revealed by microsatellite markers. Fisheries Research, 19(4):50–54.
    Ma Q, He K, Wang X, et al. 2020. Better resolution for cytochrome b than cytochromec oxidase subunit I to identify Schizothorax species (Teleostei:Cyprinidae) from the Tibetan Plateau and its adjacent area. DNA and Cell Biology, 39(4):579–598.
    Raymond M, Rousset F. 1995. GENEPOP (Version 1.2):Population genetics software for exact tests and ecumenicism. Journal of Heredity, 68(3):248–249.
    Razak S A, Ezzah H, Azman N, et al. 2019. Assessment of diversity and population structure of mango (Mangifera indica L.) germplasm based on microsatellite (SSR) markers. Australian Journal of Crop Science, 13(2):315–320.
    Sardaro M L S, Atallah M, Tavakol E, et al. 2008. Diversity for AFLP and SSR in natural populations of Lotus corniculatus L. from Italy. Crop Science Society of America, 48(3):1080–1089.
    Schl?tterer C. 2004. The evolution of molecular markers—just a matter of fashion? Nature Reviews Genetics, 5(1):63–69.
    Sepúlveda F A, González M T. 2017. Spatio-temporal patterns of genetic variations in populations of Yellowtail Kingfish Seriola lalandi from the south-eastern Pacific Ocean and potential implications for its fishery management. Journal of Fish Biology, 90(1):249–264.
    Su J H, Wei H. 2014. Genetic structure and demographic history of the endangered and endemic schizothoracine fish Gymnodiptychus pachycheilus in Qinghai-Tibetan Plateau. Zoological Science, 31(8):515–522.
    Sun P, Tang B J. 2018. Low mtDNA variation and shallow population structure of the Chinese pomfret Pampus chinensis along the China coast. Journal of Fish Biology, 11(3):125–130.
    Thrall P H, Young A. 2000. Computer note. AUTOTET:a program for analysis of Autotetraploid genotypic data. Journal of Heredity, 91(4):348–349.
    van Oosterhout C, Hutchinson W F, Wills D P M, et al. 2004. MICRO-CHECKER:software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3):535–538.
    Wang X, Tong L, Deng J, et al. 2022. Insights into historical drainage evolution based on the phylogeography of Schizopygopsis malacanthus Herzenstein (Cypriniformes, Cyprinidae) across the upper and middle Yalong River drainage in the Hengduan Mountains region, southwest China. Global Ecology and Conservation, 35(1):e02084.
    丁瑞华. 1994. 四川鱼类志. 成都:四川科学技术出版社, 391–393.
    杜岩岩, 史小宁, 宋福俊, 等. 2016. 黄河上游甘肃段厚唇裸重唇鱼资源分布现状调查. 甘肃畜牧兽医, 46(15):124–126.
    郝卓然, 梁利群, 常玉梅, 等. 2012. 扁吻鱼微卫星的筛选及群体多样性分析. 水产学杂志, 25(3):20–25.
    何德奎, 陈毅峰. 2007. 高度特化等级裂腹鱼类分子系统发育与生物地理学. 科学通报, 52(3):303–312.
    侯飞侠. 2013. 大渡裸裂尻鱼和软刺裸裂尻鱼的遗传多样性及种群结构研究. 成都:四川大学博士学位论文, 21–42.
    蒋红, 谢嗣光, 赵文谦, 等. 2007. 二滩水电站水库形成后鱼类种类组成的演变. 水生生物学报, 21(4):532–539.
    蒋鹏, 史建全, 张研, 等. 2009. 应用微卫星多态分析青海湖裸鲤(Gymnocypris przewalski (Kessler))六个野生群体的遗传多样性. 生态学报, 29(2):939–945.
    蒋志刚. 2021. 中国脊椎动物红色名录 北京:科学出版社, 537–540.
    孔啸兰, 李敏, 陈作志, 等. 2019. 基于RAD-seq技术的长体圆鲹二、三核苷酸重复微卫星标记开发与评价. 南方水产科学, 15(3):97–103.
    李柯懋, 高桂香. 2012. 厚唇裸重唇鱼生物学特性及保护建议. 河北渔业, (6):18–19, 25.
    马青展. 2020. 高原鳅属鱼类亲缘地理学及遗传多样性研究. 成都:四川大学博士学位论文, 91–108.
    梅朋森, 王力, 韩京成, 等. 2009. 水电开发对雅砻江流域生态环境的影响. 三峡大学学报:自然科学版, 31(2):8–12.
    同琳钿. 2022. 雅砻江水系软刺裸裂尻鱼(Schizopygopsis malacanthus)遗传多样性和亲缘地理学研究. 成都:四川大学硕士学位论文, 31–38.
    王军, 罗琦, 段茜. 2019. 3种金线鲃属鱼类基因组微卫星的筛选与分析. 贵州师范大学学报:自然科学版, 37(4):19–24.
    杨月静. 2019. 齐口裂腹鱼分子标记的开发及群体遗传多样性研究. 重庆:西南大学硕士学位论文, 20–23.
    张艳萍, 杜岩岩, 虎永彪, 等. 2013. 厚唇裸重唇鱼渭河亚种分类地位的探讨. 动物分类学报, 38(4):705–713.
    赵雪飞, 米博翰, 梁利群, 等. 2019. 新疆裸重唇鱼和斑重唇鱼遗传多样性分析. 水产学杂志, 32(2):19–24.
    中国林业和草原局, 中国农业农村部. 2021. 国家重点保护野生动物名录. 野生动物学报, 42(2):605–640.
    周宇. 2018. 松潘裸鲤(Gymnocypris potanin)种群遗传学研究. 成都:四川大学硕士学位论文, 50–58.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘峰林,王泽松,王太,邓嘉俊,王小东,金燕君,宋昭彬.2023.基于高通量测序的厚唇裸重唇鱼微卫星分子标记筛选.动物学杂志,58(6):817-826.

复制
文章指标
  • 点击次数:253
  • 下载次数: 1060
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-11-26
  • 在线发布日期: 2023-12-19