牛蛙冬眠期及其前后的消化道嗜银细胞分布
作者:
作者单位:

哈尔滨师范大学生命科学与技术学院 哈尔滨 150025

作者简介:

韩沐宜,女,硕士研究生;研究方向:脊椎动物学;E-mail:1271227131@qq.com。

基金项目:

黑龙江省科学基金项目(No. 2019072);


The Comparative Research of Argyrophilic Cells in the Digestive Tract of Rana catesbeiana During Pre-Hibernation, Hibernation, and Post-Hibernation
Author:
Affiliation:

Harbin School of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究两栖类在冬眠期及其前后消化道嗜银细胞是否参与冬眠期的消化调节,本文以牛蛙(Rana catesbeiana)为实验对象,采用Grimelius银染法,对冬眠期前(n = 10)、冬眠期(n = 10)和冬眠期后(n = 10)牛蛙消化道嗜银细胞的形态及密度进行比较研究。结果表明,牛蛙消化道各部位均有嗜银细胞分布;牛蛙消化道嗜银细胞形态在冬眠期、冬眠期前及冬眠期后无差异,均为锥体型、梭型和椭圆型;牛蛙消化道各部位具有外分泌功能的锥体型和梭形嗜银细胞密度在3个时期均显著高于具有内分泌功能的椭圆型嗜银细胞密度(P < 0.01);3个时期牛蛙消化道嗜银细胞分布密度高峰均位于空肠处,但低谷有所不同,冬眠期前和冬眠期后牛蛙消化道嗜银细胞的分布密度低谷位于食管,而冬眠期其分布密度低谷位于贲门;3个时期相比,冬眠期前和冬眠期幽门处分布密度差异不显著(P > 0.05),其余部位均有差异,且食管、胃、十二指肠、空肠、回肠和直肠中嗜银细胞分布密度在冬眠期显著高于冬眠期前和冬眠期后(P < 0.05);冬眠期前和冬眠期后消化道嗜银细胞分布密度呈倒“U”型趋势,冬眠期分布密度呈现“~”型趋势。结合相关研究,推测牛蛙嗜银细胞分布密度的改变可能与机体适应不同生理状态及消化功能的调节有关。

    Abstract:

    [Objectives] Hibernation is a very frequent occurrence in animals. During hibernation, the activity and digestive functions of animals are reduced, and the metabolic rate of animals is much lower than the basal metabolic rate, especially in amphibians and reptiles. Research demonstrated that the numbers of glucagon, gastrin, and somatostatin cells in the digestive system of Rana catesbeiana during hibernation were higher than that during the non-hibernation period or not significantly changed. Argyrophilic cells are the general term for the endocrine cells of the digestive tract that regulate the digestion, absorption, and feeding behavior of animals. However, little is known about the changes of argyrophilic cells in the digestive tract of R. catesbeiana pre-hibernation and post-hibernation, so we studied these changes during hibernation. [Methods] As a pre-hibernation experimental group, we acquired 10 R. catesbeiana from the Harbin Hada wholesale aquatic products market in September 2020 and acclimated them for 7 d in the laboratory. As a hibernation phase experimental group, 10 R. catesbeiana were obtained in October 2020 and acclimated to lab settings for 7 d in 6 ℃ incubators until mid-December 2020. April 10, 2021, 7 d under acclimatized laboratory conditions for the post-hibernation experimental group. Each R. catesbeiana was fed a live goldfish weighing around 3.5 g every three days while it was being domesticated. The Grimelius silver staining was applied to the intestinal tract. SPSS 23.0 and Duncan’s multiple range test were applied to make a statistical analysis of the argyrophilic cells in the digestive tract of three periods of R. catesbeiana. An independent sample t-test was applied to compare the distribution density of the argyrophilic cells in the same part of the digestive tract of the three groups, and the data were shown as “mean ± SE”. GraphPad Prism Version 8.0 software was used to plot the data. The argyrophilic cells were photographed using MOTICAM ProS5Lite microimaging system. [Results] The argyrophilic cells in R. catesbeiana digestive tract did not differ morphologically during hibernation, pre-hibernation and post-hibernation, being cone-shaped, fusiformis and ellipse. Cone-shaped and fusiformis argyrophilic cells with exocrine activity in various parts of the R. catesbeiana digestive tract had considerably larger densities in the digestive tract during the three periods than elliptical cells with endocrine function (P < 0.01). In all three phases, the distribution density of argyrophilic cells peaked in the jejunum, while the troughs varied. The distribution densities of argyrophilic cells are lowest in the esophagus during the pre-hibernation and post-hibernation periods, and in the cardia during the hibernation period. Except for the pre-hibernation and hibernation periods, there were differences in the distribution density at the pylorus (P > 0.05), and the distribution densities of the esophagus, stomach, duodenum, jejunum, ileum, and rectum during hibernation were significantly higher than those of the pre-hibernation and post-hibernation periods (P < 0.05). In the pre-hibernation and post-hibernation periods, the argyrophilic cells displayed an inverted “U”-shaped distribution pattern, and in the hibernation phase, a “~”-shaped distribution pattern (Fig. 2). [Conclusion] Overall, the variations in the distribution density of argyrophilic cells in R. catesbeiana during the three time periods were correlated with the physiological states and functions of the major digestive tract components. The distribution density of argyrophilic cells increased dramatically during hibernation compared to pre-hibernation and post-hibernation, which was linked to improved immunological response and an increase in the small intestine’s sensitivity to neurotransmitters. In short, the morphological characteristics of the argyrophilic cells did not change significantly in pre-hibernation and post-hibernation, whilst the number of argyrophilic cells changed to accommodate the regular performance of their digestive activities and endocrine functions.

    参考文献
    El-Salhy M, Grimelius L, Wilander E, et al. 1981. Histological and immunohistochemical studies of the endocrine cells of the gastrointestinal mucosa of the Toad (Bufo regularis). Histochemistry, 71(1):53–65.
    Gerhard H, Sylvia O, Ralf E. 2004. Natural hypometabolism during hibernation and daily torpor in mammals. Respiratory Physiology & Neurobiology, 141(3):317–329.
    Mahfud M, Ernawati E, Budipitojo T, et al. 2020. An immunohistochemical study of endocrine cells in the digestive tract of Varanus salvator (Reptile:Varanidae). Veterinary World, 13(9):1737–1742.
    Niu Z Y, Xue H Y, Jiang Z Y, et al. 2022. Effect of temperature on intestinal microbiota and lipid metabolism in Rana chensinensis tadpoles. Environmental Science and Pollution Research, 2022(30):35398–35412.
    Sartori S S R, Peixoto J V, Lopes V D P G, et al. 2018. Neuroendocrine structures of the small intestine of the capybara Hydrochoerus hydrochaeris (Mammalia, Rodentia). Animal Biology, 68(1):89–104.
    Wang H, Zhang S, Zhou N, et al. 2014a. Distribution of endocrine cells in the digestive tract of Alligator sinensis during the active and hibernating period. Tissue and Cell, 46(5):343–351.
    Wang H, Zhou N, Rui Z, et al. 2014b. Identification and localization of gastrointestinal hormones in the skin of the Bullfrog Rana catesbeiana during periods of activity and hibernation. Acta Histochemica, 116(8):1418–1426.
    Wang J X, Peng K M, Liu H Z, et al. 2010. Distribution and morphology of argyrophilic cells in the digestive tract of the African Ostrich. Tissue and Cell, 42(1):65–68.
    陈慧, 郭慧, 方翔, 等. 2014. 饥饿和冬眠期牛蛙胃肠胰系统内分泌细胞的变化. 水生生物学报, 38(1):187–192.
    陈霞, 任春宇, 李淑兰. 2014. 极北鲵消化道嗜银细胞的胚后发生. 动物学杂志, 49(4):546–551.
    陈勇, 吴莉芳, 张东鸣, 等. 2000. 利用塑料大棚缩短牛蛙冬眠期的研究. 吉林农业大学学报, 22(2):97–99.
    楚德昌. 2001. 冬眠与非冬眠刺猬小肠运动机能与对Ad、Ach反应敏感性比较. 四川动物, 20(4):217–219.
    楚德昌, 邓振旭. 2004. 中华蟾蜍、黑斑蛙冬眠期与非冬眠期消化管嗜银细胞的比较. 动物学杂志, 39(1):21–24.
    邓孔昭. 1980. 胃肠道内分泌细胞及其激素. 生理科学进展, 11(2):113–119.
    窦歆凯. 2021. 牛蛙研究现状与展望. 知识窗:教师版, (3):95.
    方德福. 1995. 现代医学实验技巧全书. 北京:北京医科大学、中国协和医科大学联合出版社, 51–52.
    郭慧, 周乃珍, 赵帅, 等. 2013. 牛蛙变态发育前后消化道内分泌细胞的变化. 水生生物学报, 37(3):541–546.
    黄威权, 黄荫乔, 王文超, 等. 1985. 大鼠小肠嗜银、亲银细胞的分布及形态学观察. 解剖学报, 16(4):412–416, 457.
    李佳洲, 李桂芬, 苏福来, 等. 2011. 版纳鱼螈消化道嗜银细胞的分布及形态学. 解剖学杂志, 43(2):213–216.
    梁翼东, 秦宇. 2018. 青海沙蜥消化道嗜银细胞的分布及形态观察. 青海畜牧兽医杂志, 48(3):17–19, 47.
    马雪泷, 唐鑫生, 吴仁红, 等. 2012 凹耳蛙消化道组织学和嗜银细胞形态观察. 动物学杂志, 47(1):9–15.
    牛鑫鑫. 2013. 花背蟾蜍脏器大小、肠道可塑性和内分泌细胞的季节变化. 合肥:安徽农业大学硕士学位论文.
    牛永刚. 2019. 高山倭蛙冬眠的生理生化特征及分子机制. 兰州:兰州大学博士学位论文.
    欧阳凤, 张文学, 陈晓虹. 2007. 叶氏隆肛蛙和太行隆肛蛙消化道5-羟色胺内分泌细胞. 解剖学杂志, 30(4):493–495.
    任春宇. 2012. 极北鲵消化道组织学及其内分泌细胞的研究. 哈尔滨:哈尔滨师范大学硕士学位论文.
    任春宇, 曹雷, 李淑兰, 等. 2011. 极北鲵与东北小鲵消化道嗜银细胞的比较. 中国农学通报, 27(11):46–49.
    庹云, 曹坤, 刘龙伟, 等. 2017. 花 消化道嗜银细胞的分布及形态学观察. 黑龙江畜牧兽医, (11):245–247, 300.
    汪寅, 汪子怡, 刘溯源, 等. 2019. 中华蟾蜍登陆后消化道嗜银细胞形态和分布密度的增龄变化. 中国组织化学与细胞化学杂志, 28(4):345–349.
    吴昊. 2013. 东北林蛙冬眠期前后消化道内分泌细胞的比较研究. 哈尔滨:哈尔滨师范大学硕士学位论文.
    吴媛媛. 2015. 中华蟾蜍变态发育过程中消化道黏液细胞和黏膜酶及皮肤生物活性物质的适应性变化. 芜湖:安徽师范大学硕士学位论文.
    伍亮, 赵秋平, 吴颖, 等. 2018. 花背蟾蜍消化道嗜银细胞形态和分布密度的增龄变化. 中国组织化学与细胞化学杂志, 27(6):548–552.
    杨贵波, 陈茂生, 邓泽沛, 等. 1995. 大熊猫胃肠道内分泌细胞分布型的研究. 兽类学报, 15(1):4–10.
    张敏军, 陈霞. 2020. 8周有氧运动对肥胖大鼠消化道嗜银细胞形态及分布密度的影响. 动物学杂志, 55(6):752–759.
    张志强. 2013. 两栖类消化道嗜银细胞和5-羟色胺细胞的研究进展. 中国组织化学与细胞化学杂志, 22(2):172–175.
    赵成坚, 黄勇, 刘武, 等. 2021. 蛤蚧冬眠期与非冬眠期消化道嗜银细胞的比较. 养殖与饲料, 20(10):13–16.
    赵文艳, 李淑兰. 2003. 黑斑蛙胃肠道嗜银细胞的分布及形态学研究. 中国比较医学杂志, 13(6):48–51.
    赵洋洋, 祁玥, 王晓宁, 等. 2020. 青海沙蜥消化道组织结构及嗜银细胞研究. 生态学报, 40(16):5855–5861.
    朱宇航, 司华哲, 张玉, 等. 2021. 冬眠行为与动物肠道微生物相互作用机制的研究进展. 动物营养学报, 33(7):3719–3725.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩沐宜,费继蕊,刘志涛,刘鹏,赵文阁.2023.牛蛙冬眠期及其前后的消化道嗜银细胞分布.动物学杂志,58(6):908-915.

复制
文章指标
  • 点击次数:151
  • 下载次数: 909
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-17
  • 在线发布日期: 2023-12-19