绿背山雀人工巢箱真菌多样性差异分析
作者:
作者单位:

1.贵州大学生命科学学院 贵阳 550025;2.贵州大学林学院 贵阳 550025;3.贵州大学生物多样性与自然保护研究中心 贵阳 550025;4.贵阳阿哈湖国家湿地公园管理处 贵阳 550007

作者简介:

辛佳佳,女,硕士研究生;研究方向:动物生态学;E-mail:xjj20210901@163.com。

基金项目:

国家自然科学基金项目(No. 32160126),2016年中央财政林业补助资金项目-贵阳阿哈湖国家湿地公园鸟类招引及相关研究;


Analysis of Fungal Differences in Artificial Nest Boxes of Parus monticolus
Author:
Affiliation:

1.College of Life Science, Guizhou University, Guiyang 550025; 2.College of Forestry, Guizhou University, Guiyang 550025; 3.Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang 550025; 4.Aha Lake National Wetland Park, Guiyang 550007, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    真菌是巢穴微生物的重要组成部分,与鸟类的生存、繁殖和环境适应息息相关。本研究通过悬挂人工巢箱招引绿背山雀(Parus monticolus)入住,基于内转录间隔区(ITS)测序技术,对绿背山雀繁殖成功巢箱与筑巢未产卵巢箱真菌群落的组成差异进行探究。结果显示,在门水平上,子囊菌门(Ascomycota,98.81%)是繁殖成功巢箱内微生物的主要菌门;子囊菌门(85.59%)和担子菌门(Basidiomycota,8.33%)是筑巢未产卵巢箱内微生物的主要菌门。在属水平上,繁殖成功巢箱的优势属为拟单宽皿菌属(Phialemoniopsis,83.04%)、曲霉属(Aspergillus,4.75%)、子囊菌属(Arthroderma,4.29%)和柄帚霉属(Scopulariopsis,1.78%);筑巢未产卵巢箱的优势属为拟单宽皿菌属(36.06%)、曲霉属(14.53%)、青霉属(Penicilliu,6.22%)、单端孢霉属(Trichothecium,5.80%)、德巴利酵母菌属(Debaryomyces,1.67%)和蝶孔耳属(Papiliotrema,1.09%)。Alpha多样性分析表明,筑巢未产卵巢箱中真菌的多样性和丰富度均显著高于繁殖成功巢箱(P < 0.05);Beta多样性分析表明,繁殖成功巢和筑巢未产卵巢箱之间的真菌群落存在显著差异;LEfSe分析共检测到19个具有统计学差异的生物标记物,繁殖成功巢箱和筑巢未产卵巢箱的显著生物标志物分布在子囊菌门和担子菌门中,两种巢箱的标记物种存在显著差异。整体来说,与繁殖成功巢相比,筑巢未产卵巢内分布有更多的潜在病原菌。

    Abstract:

    [objectives] Fungi are important components of nest microbiota, which are closely related to the survival, reproduction, and environmental adaptation of birds. However, most of the research on the relationship between birds and microbiota is mainly focused on intestinal microbes, but few studies focused on the micro-ecological environment in the nest. So, we want to investigate the fungal community diversity in the nest of the Green-backed Tit (Parus monticolus). [Methods] From April to June 2020, in Aha Lake National Wetland Park in Guiyang, Guizhou Province, the Green-back Tits were attracted by hanging artificial nesting boxes. All nests were inspected once a week in the early breeding period, and once every 2 days after the emergence of nest materials. Microbial samples were collected from successful breeding nests and the nests without laying eggs. Based on internal transcribed spacer (ITS) sequencing technology, the differences in fungal community composition between successful breeding nests and the nests without laying eggs of Green-backed Tit were investigated. [Results] At the phylum level, the results showed that Ascomycota (98.81%) was the main phyla of successful breeding nests, Ascomycota (85.59%) and Basidiomycota (8.33%) were the main phyla of the nests without laying eggs (Fig. 2a). At the genus level, the dominant genera of successful breeding nests were Phialemoniopsis (83.04%), Aspergillus (4.75%), Arthroderma (4.29%) and Scopulariopsis (1.78%), and the dominant genera of the nests without laying eggs were Phialemoniopsis (36.06%), Aspergillus (14.53%), Penicilliu (6.22%), Trichothecium (5.80%), Debaryomyces (1.67%) and Papiliotrema (1.09%) (Fig. 2b). Alpha diversity analysis showed that the diversity and richness of fungi in the nests without laying eggs were significantly higher than that in successful breeding nests (P < 0.05) (Fig. 3). Beta diversity analysis showed that there were significant differences in fungal communities between successful breeding nests and the nests without laying eggs (Fig. 4). A total of 19 biomarkers with statistical differences were detected by LEfSe (Linear discriminant analysis effect size) analysis. The significant biomarkers of successful breeding nests and the nests without laying eggs were distributed in Ascomycota and Basidiomycota, and there were significant differences between these two biomarker species (Fig. 5). [Conclusion] In general, by comparing the differences in fungal composition in successful breeding nests and the nests without laying eggs, we find that birds may affect the composition structure of microbiota in the nests during breeding, showing more potential pathogens in the nests without laying eggs than in successful breeding nests.

    参考文献
    Barathidasan R, Singh S D, Saini M, et al. 2013. The first case of angioinvasive pulmonary aspergillosis in a Himalayan Griffon Vulture (Gyps himalayensis). Avian Biology Research, 6(4):302–306.
    Burtt E H, Ichida J M. 1999. Occurrence of feather degrading bacilli in the plumage of birds. The Auk, 116(2):364–372.
    Callahan B J, Mcmurdie P J, Rosen M J, et al. (2016). Dada2:high-resolution sample inference from illumina amplicon data. Nature Methods, 13(7):581–583.
    Goodenough A E, Stallwood B. 2010. Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) nests. Microbial Ecology, 59(2):221–232.
    Goodenough A E, Stallwood B, Dandy S, et al. 2017. Like mother like nest:similarity in microbial communities of adult female Pied Flycatchers and their nests. Journal of Ornithology, 158(1):233–244.
    Huff W E, Ruff M D, Chute M B. 1992. Characterisation of the toxicity of the mycotoxins aflatoxin, ochratoxin, and T-2 toxin in game birds. II. Ringneck pheasant. Avian Diseases, 36(1):30–33.
    Koljalg U, Nilsson R H, Abarenkov K, et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21):5271–5277.
    Kornillowicz K T, Kitowski I. 2018. Nests of Marsh harrier (Circus aeruginosus L.) as refuges of potentially phytopathogenic and zoopathogenic fungi. Saudi Journal of Biological Sciences, 25(1):136–143.
    Korni??owicz T, Kitowski I. 2013. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia, 175(1/2):43–56.
    Lawson B,MacDonald S,Howard T, et al. 2006. Exposure of garden birds to aflatoxins in Britain. Science of the Total Environment, 361(1/3):124–131.
    Lucas J, Bill B, Stevenson B, et al. 2017. The microbiome of the ant-built home:the microbial communities of a tropical arboreal ant and its nest. Ecosphere, 8(2):e01639.
    Madden A A, Grassetti A, Soriano J A, et al. 2013. Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera:Vespidae:Polistinae) nests. Environmental Entomology, 42(4):703–710.
    Margaret M N, Michael G H, Thomas C G B, et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110(9):3229–3236.
    McQuilken M P, Gemmell J, Lahdenper? M L. 2001. Gliocladium catenulatum as a potential biological control agent of damping- off in bedding plants. Journal of Phytopathology, 149(3/4):171–178.
    Meenakshi S, Rawat A K S, Govindarajan R. 2007. Antimicrobial activity of some Indian mosses. Fitoterapia, 38(2):156–158.
    Mennerat A, Mirleau P, Blondel J, et al. 2009. Aromatic plants in nests of the Blue Tit Cyanistes caeruleus protect chicks from bacteria. Oecologia, 161(4):849–855.
    Mu D Y, Meng J H, Bo X X, et al. 2018. The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles. Ecotoxicology and Environmental Safety, 154(6):6–12.
    Photita W, Lumyong S, Lumyong P, et al. 2004. Are some endophytes of Musa acuminatalatent pathogens? Fungal Divers, 16(1):131–140.
    Pugh G J. 1996. Associations between birds’ nests, their pH, and keratinophilic fungi. Sabouraudia, 5(1):49–53.
    Quist C F, Bounous D I, Kilburn J V, et al. 2000. The effect of dietary aflatoxin on wild turkey poults. Journal of Wildlife Diseases, 36(3):436–444.
    Ramette A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2):142–160.
    Segata, Izard J, Waldron L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6):R60.
    Shawkey M D, Pillai S R, Hill G E, et al. 2007. Bacteria as an agent for change in structural plumage color:correlational and experimental evidence. The American Naturalist, 169(1):112–121.
    Wallis I R, Claridge A W, Trappe J M. 2012. Nitrogen content, amino acid composition and digestibility of fungi from a nutritional perspective in animal mycophagy. Fungal Biology, 116(5):590–602.
    Yuan Y, Chen J J, Korhonen K, et al. 2021. An updated global species diversity and phylogeny in the forest pathogenic genus Heterobasidion (Basidiomycota, Russulales). Frontiers in Microbiology, 11:596393.
    Zab?otni A, Kaliński A, Bańbura M et al. 2020. Experimental nest replacement suggests that the bacterial load of nests may mediate nestling physiological condition in cavity nesting Great Tits (Parus major). Journal of Ornithology, 161(3):819–828.
    戴蓬博. 2019. 粉红聚端孢引致富士苹果心腐病的侵染特征及致病机制. 咸阳:西北农林科技大学博士学位论文.
    胡永志, 杨鑫凤, 周雅琴, 等. 2021. 两面针内生真菌遗传多样性分析及其抗菌活性研究. 中国中药杂志, 46(13):3349–3355.
    施笑笑, 王教瑜, 王艳丽, 等. 2020. 子囊菌交配型位点与交配型基因研究进展. 微生物学通报, 47(5):1572–1581.
    谭占坤, 池福敏, 商振达, 等. 2022. 放牧藏猪、舍饲藏猪与商品猪粪便真菌群落组成及其与饲粮纤维消化的相关性研究. 微生物学报, 62(1):259–274.
    王争艳, 雍晗紫, 胡海生. 2022. 共生菌与昆虫的免疫. 微生物学报, 62(8):2893–2904.
    肖晗汕, 李滔滔, 汤涵, 等. 2020. 冠突散囊菌繁殖体提取物抑菌活性研究. 食品与发酵工业, 46(14):65–69.
    姚婉玉, 罗青华, 梁伶, 等. 2011. 经呼吸道感染马尔尼菲青霉菌的动物实验研究. 中国皮肤性病学杂志, 25(4):264–267.
    郑鄢燕, 赵力卉, 王宇滨, 等. 2020. 链格孢、粉红单端孢通过降解果皮细胞壁导致哈密瓜病害. 食品与发酵工业, 46(10):124–131.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

辛佳佳,曹和琴,张海波,胡灿实.2023.绿背山雀人工巢箱真菌多样性差异分析.动物学杂志,58(6):916-925.

复制
文章指标
  • 点击次数:152
  • 下载次数: 1117
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-18
  • 在线发布日期: 2023-12-19