基于转录组探讨中国圆田螺在干旱胁迫下休眠特征
作者:
作者单位:

1.上海海洋大学水产与生命学院 上海 201306;2.盐城师范学院湿地学院 盐城 224000

作者简介:

唐胜,男,硕士,研究生;研究方向:无脊椎动物学;E-mail:ts297896596@sohu.com。

基金项目:

国家自然科学基金项目(No. 32270487),江苏省科学技术厅重点研发计划项目(No. BE2020673);


Transcriptome Analysis of the Dormancy Characteristic Mechanism of Cipangopaludina chinensis Under Drought Stress
Author:
Affiliation:

1.College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 2.Collage of Wetland, Yancheng Teachers University, Yancheng 224000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    中国圆田螺(Cipangopaludina chinensis)属于淡水大型螺类,适应性强,分布广泛,在极端环境下能够迅速进入休眠状态,以抵御不良环境对自身造成的影响。为研究其在干旱胁迫下的休眠特征,应用高通量测序技术对中国圆田螺在干旱胁迫下肝与肾组织进行转录组测序及分析。结果显示,中国圆田螺在干旱休眠时与正常有水养殖相比,其肾组织中110个基因上调,389个基因下调;在肝组织中有84个基因上调,86个基因下调。肝组织差异基因主要与细胞黏附的调节、细胞外基质组织生长、神经元投射和轴突再生等功能相关;肾组织差异基因与碳水化合物代谢过程、去磷酸化、上皮细胞增殖调节、羟酸有机酸跨膜转移、组织重塑等功能相关;KEGG富集分析发现,差异基因主要定位在PI3K-Akt信号通路、蛋白聚糖、乳糖、鞘脂的合成代谢通路等与干旱胁迫相关的主要代谢通路上。研究表明,热激蛋白基因Hsp70、SRCRFASNAPMAPMSTNPoc1bS1P、Na+-K+-ATP酶β1亚基及SLC28A3基因在中国圆田螺干旱休眠时开启自身调节,田螺通过调控不同基因,启动阻隔自身对外界光线的感知,停止脂肪积累、抑制肌肉生长、吞噬自身凋亡细胞获取营养、调节细胞渗透压保水等使自身快速适应干旱休眠状态。

    Abstract:

    [Objectives] Cipangopaludina chinensis is widely distributed in Asia. It has strong adaptability and can quickly enter a dormancy state under drought.In this paper, we study the dormancy characteristic of C. chinensis under drought stress to provide a research clue for revealing the mechanism of extensive adaptive tolerance, as well as the genetics and breeding of the C. chinensis. [Methods] The samples of C. chinensis were collected in Yancheng. Select individuals with sound ontogeny and consistent size to temporarily keep in the laboratory for 2 days. 30 C. chinensis were placed in an anhydrous plastic bucket for drought stress treatment, and the room temperature was adjusted to 24 ℃. 30 C. chinensis were placed in plastic buckets with water as control, and kept temporarily for 30 days. After 30 days, the liver and kidney tissues of the control group and the stress group were taken at random for 3 biological replications. High throughput sequencing technology was used to sequence and analyze the transcriptome of the liver and kidney tissues of C. chinensis under drought stress. After cleaning the raw sequencing datathen we identified different expressed genes by P < 0.05 and | log2FoldChange | > 2. Finally, GO (gene ontology) annotation and pathway enrichment analysis of the different expressed geneshave been done. [Results] The results showed that under drought stress, 110 genes were up-regulated and 389 genes were down regulated in the kidney tissue, 84 genes were up-regulated, and 86 genes were down-regulated in the liver tissue (Fig. 3), gene ontology is mainly related to the regulation of cell adhesion, extracellular matrix organization, neuron projection regeneration, carbohydrate metabolic process, dephosphorylation, regulation of epithelial cell proliferation, carboxylic acid, organic acid transmembrane transport, and tissue remodeling (Fig. 5); the KEGG enrichment analysis showed that the differently expressed genes were mainly enriched in PI3K-Akt signal pathway, proteoglycan, lactose, sphingolipid biosynthesis and metabolic pathway 5 that are the main pathways under drought stress (Fig. 6). [Conclusion] Based on the enrichment analysis results of GO and KEGG, heat shock protein genes Hsp70, SRCR, SLC28A3, FASN, APMAP, MSTN, Poc1b, S1P and Na+- K+- ATPase β Subunit 1 have been identified as important genes related to dormancy of the C. chinensis under drought stress.

    参考文献
    Areschoug T, Gordon S. 2009. Scavenger receptors:role in innate immunity and microbial Pathogenesis. Cellular Microbiology, 11(8):1160–1169.
    Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15):2114–2120.
    Buchanan K L. 2000. Stress and the evolution of condition-dependent signals. Trends in Ecology & Evolution, 15(4):129–175.
    Canton J, Neculai D, Grinstein S. 2013. Scavenger receptors in homeostasis and immunity. Nature Reviews Immunology, 13(9):621–634.
    Cimino E J, Owens L, Bromage E, et al. 2002. A newly developed ELISA showing the effect of environmental stress on levels of hsp86 in Cherax quadricarinatus and Penaeus monodon. Comparative Biochemistry and Physiology, 132(3):591–598.
    Cooper E L, Wright R K, Klempau A E, et al. 1992. Hibernation alters the frog’s immune system. Cryobiology, 29(5):616–631.
    Demeke A, Tassew A. 2016. Heat shock protein and their significance in fish health. Research and Reviews, 2(1):66–75.
    Du Z, Xin Z, Yi L, et al. 2010. AgriGO:A GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38(Web Server issue):64–70.
    Dutton C J, Taylor P. 2003. A comparison between pre- and posthibernation morphometry, hematology, and blood chemistry in viperid snakes. Journal of Zoo and Wildlife Medicine, 34(1):53–58.
    Farcy E, Voiseux C, Lebel J, et al. 2009. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress & Chaperones, 14(4):371–380.
    Feidantsis K, Anestis A, Vasara E, et al. 2012. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus). Comparative Biochemistry & Physiology A:Molecular & Integrative Physiology, 162(4):331–339.
    Hartl F U, Hayer M. 2002. Molecular chaperones in the cytosol:from nascent chain to folded protein. Science, 295(5561):1852–1860.
    Hendrick J P, Hartl F U. 2003. Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry, 62(1):349–384.
    Kanehisa M, Araki M, Goto S, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(Database issue):480–484.
    Kim D, Paggi J M, Park C, et al. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8):907–915.
    Kiss A J, Muir T J, Lee R E Jr, et al. 2011. Seasonal variation in the hepatoproteome of the dehydration- and freeze-tolerant Wood Frog, Rana sylvatica. International Journal of Molecular Sciences, 12(12):8406–8414.
    Li Q, Han J, Du F, et al. 2011. Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Molecular Biology Reports, 38(4):2657–2663.
    Liao Y, Smyth G K, Shi W. 2013. The Subread aligner:fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108.
    Lindquist S, Craig E A. 1988. The heat-shock proteins. Annual Reviews of Genetics, 22(1):631–677.
    Liu N J, Hou L P, Bao J J, et al. 2021. Sphingolipid metabolism, transport and functions in plants:recent progress and future perspectives. Plant Communications, 2(5):1–12.
    Lu H F, Du L N, Li Z Q, et al. 2014. Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda:Viviparidae). Zoological Research, 35(6):510–527.
    Luo G, Mu J Z, Wang S H, et al. 2022. Association of blood APMAP content and meat quality trait inRex rabbits. Animal Biotechnology, 1–6.
    Martinez V G, Moestrup S K, Holmskov U, et al. 2011. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacological Reviews, 63(4):967–1000.
    McPherron A C, Lee S J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 94(23):12457–12461.
    Ng C K Y, Carr K, McAinsh M R, et al. 2001. Erratum:Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 410(6828):596–599.
    Page M, Salway K D, Lp Y K, et al. 2010. Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi. Journal of Comparative Physiology B:Biochemical Systems and Environmental Physiology, 180(3):361–369.
    Pesheva P, Gennarini G, Goridis C, et al. 1993. The F3/11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1-160/180. Neuron, 10(1):69–82.
    Piano A, Asirelli C, Caselli F, et al. 2002. Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress & Chaperones, 7(3):250–257.
    Pratihar S, Kundu J K. 2011. Life in cold lane. Germany:Lap Lambert Academic Publishing, 1–136.
    Qian H, Xiao M, Wang X, et al. 2013. cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology, 165(1):30–39.
    Robert J. 2003. Evolution of heat shock protein and immunity. Developmental & Comparative Immunology, 27(6/7):449–464.
    Sullivan K J, Biggar K K, Storey K B. 2015.Transcript expression of the freeze responsive gene fr10 in Rana sylvatica during freezing, anoxia, dehydration, and development. Molecular and Cellular Biochemistry, 399(1/2):17–25.
    Wang B, Li F H, Dong B, et al. 2006. Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Marine Biotechnology, 8(5):491–500.
    Wang H, Zhou N Z, Zhang R, et al. 2014. Identification and localization of gastrointestinal hormones in the skin of the bullfrog Rana catesbeiana during periods of activity and hibernation. Acta Histochemica, 116(8):1418–1426.
    Wu Q, Sugimoto K, Moriyama K, et al. 2002. Cloning of hibernation-related genes of Bullfrog (Rana catesbeiana) by cDNA subtraction. Comparative Biochemistry & Physiology Part B:Biochemistry & Molecular Biology, 133(1):85–94.
    Wu S B. 1999. Differential gene expression under environmental stress in the freeze tolerant wood frog, Rana sylvatica. Carleton University (Canada) doctoral dissertation.
    Xu Y, Zheng G, Dong S, et al. 2014. Molecular cloning, characterization and expression analysis of HSP60, HSP70 and HSP90 in the golden apple snail, Pomacea canaliculata. Fish and Shellfish Immunology, 41(2):643–653.
    Zacharias U, Rauch U. 2006. Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology. Journal of Cell Science, 119(16):3456–3466.
    Zhang C, Zhang Q, Wang F, et al. 2015. Knockdown of poc1b causes abnormal photoreceptor sensory cilium and vision impairment in zebrafish. Biochemical and Biophysical Research Communications, 465(4):651–657.
    Zhao T, Xiong J, Chen W, et al. 2021. Purification and Characterization of a Novel Fibrinolytic Enzyme from Cipangopaludina Cahayensis. Iranian Journal of Biotechnology, 19(1):121–127.
    Zhao X, Yu H, Kong L, et al. 2012. Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS One, 7(9):e46244.
    陈李婷, 杜雪松, 文衍红, 等. 2019. 广西地区3种螺的含肉率及营养成分分析. 肉类工业, 10(3):20–22.
    丛福君, 刘志文. 1993. 中国林蛙生殖休眠原因初探. 特产研究, 1993(2):21–22.
    甘艳艳, 关富仁, 刘静, 等. 2020. 清道夫受体与脑卒中的研究进展. 中国比较医学杂志, 30(4):131–136.
    韩微. 2012. 福寿螺对逆境胁迫的行为反应及生理生化反应研究. 南宁:广西大学博士学位论文.
    黄婧婧, 马宇航, 王育璠. 2017. 脂肪细胞膜相关蛋白的研究进展. 上海交通大学学报:医学版, 37(11):1548–1547.
    李君. 2011. 西农萨能羊脂肪酸合酶(FASN)基因启动子结构和功能研究. 咸阳:西北农林科技大学博士学位论文.
    刘凌云. 2009. 普通动物学. 北京:高等教育出版社.
    罗辉, 陈李婷, 敬庭森, 等. 2022. 田螺科四种螺的肌肉主要营养成分. 水产学报, 46(11):2177–2185.
    牛永刚. 2019. 高山倭蛙冬眠的生理生化特征及分子机制. 兰州:兰州大学博士学位论文.
    张卫红. 2003. 陆生贝类的休眠与呼吸. 生物学通报. 38(2):16–18.
    周国利, 金海国. 2008. 脂肪酸合成酶基因(FASN)的研究进展. 安徽农业科学, 36(9):3559–3578.
    周康奇, 林勇, 庞海峰, 等. 2021. 中国圆田螺肌肉营养成分及消化酶活力比较分析. 淡水渔业, 51(6):106–112.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐胜,卢想,朱颖,董学颖,唐俊,刘秋宁,王刚,唐伯平.2023.基于转录组探讨中国圆田螺在干旱胁迫下休眠特征.动物学杂志,58(6):937-949.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-11
  • 在线发布日期: 2023-12-19