鸣禽与人类发声器官及发声行为神经控制通路的比较
作者:
作者单位:

江西科技师范大学有机功能分子研究所 南昌 330013

作者简介:

张琨,男,硕士研究生;研究方向:神经生理学;E-mail:17862236019@163.com。

基金项目:

国家自然科学基金项目(No. 32160123,31860605),江西省自然科学基金重点项目(No. 20212ACB205002),江西省自然科学基金面上项目(No. 20202BABL205022,20212BAB205003),江西省研究生创新专项资金资助项目(No. YC2022-s793);


Comparison of Vocal Organs and Neural Control Pathways of Vocal Behavior Between Songbirds and Humans
Author:
Affiliation:

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    与人类语言学习或形成一样,鸣禽鸣唱也是一种发声学习行为,二者具有一定的相似性,例如发声学习过程均需听觉反馈的参与,幼年期具有更强的发声学习能力,可对复杂的声学结构和音节序列进行控制等。尽管鸣禽和人类的发声器官在结构上有很大差异,但二者发声的物理机制仍表现出很强的相似性。虽然相比于其他哺乳动物,鸣禽和人类的亲缘关系很远,但通过对比发声行为产生的基础通路——脑干先天发声控制通路,以及与发声学习相关的更高神经水平的发声运动和学习通路脑区位置、相互联系、功能及基因表达谱,提示鸣禽鸣唱和人类语言的神经控制具有一定的进化相似性。这些共同特征使得鸣禽成为了研究发声学习的理想模型。本文对鸣禽与人类的发声器官及发声行为的神经控制通路进行了比较,并对鸣禽模型在人类失语症治疗研究中潜在的应用前景进行了展望,以期为研究人类语言学习的神经机制及语言障碍的治疗带来理论参考和借鉴。

    Abstract:

    Like human language learning or formation, songbirds’ singing is also a vocal learning behavior. There are clear similarities between them, for example, both of them need auditory feedback to participate in the process of vocal learning, and have stronger vocal learning ability in the juvenile stage and control ability of complex acoustic structures and syllable sequences. Despite the great structural differences between the vocal organs of songbirds and humans, the physical mechanism of their vocalization still shows strong similarity. Although songbirds are distantly related to humans compared to mammals, it is suggested that the neural control of songbird singing and human language also have some evolutionary similarities, by comparing their brain stem innate vocal control pathways, which is the basic pathway for vocal behavior, and the location, interconnection, function and gene expression profile of vocal motor pathways and vocal learning pathways at a higher neural level related to vocal learning. These common features make songbirds an ideal model for studying vocal learning. This review compared the vocal organs and neural control pathways of vocal behavior between songbirds and humans, and forecasted the potential application of songbird models in the treatment of human aphasia, to bring theoretical reference for studying the neural mechanism of human language learning and the treatment of language disorders.

    参考文献
    Achiro J M, Shen J, Bottjer S W. 2017. Neural activity in cortico-basal ganglia circuits of juvenile songbirds encodes performance during goal-directed learning. eLife, 6:e26973.
    Adam I, Maxwell A, R??ler H, et al. 2021. One-to-one innervation of vocal muscles allows precise control of birdsong. Current Biology, 31(14):3115–3124. e5.
    Alipour F, Titze I R, Hunter E, et al. 2005. Active and passive properties of canine abduction/adduction laryngeal muscles. Journal of Voice:Official Journal of the Voice Foundation, 19(3):350–359.
    Belyk M, Brown R, Beal D S, et al. 2021. Human larynx motor cortices coordinate respiration for vocal-motor control. NeuroImage, 239:118326.
    Bhatnager S C, Andy O J, Korabic E W, et al. 1989. The effect of thalamic stimulation in processing of verbal stimuli in dichotic listening tasks:a case study. Brain and Language, 36(2):236–251.
    Bolhuis J J, Okanoya K, Scharff C. 2010. Twitter evolution:converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11):747–759.
    Brittan-Powell E F, Dooling R J, Larsen O N, et al. 1997. Mechanisms of vocal production in budgerigars (Melopsittacus undulatus). The Journal of the Acoustical Society of America, 101(1):578–589.
    Brown D E, Chavez J I, Nguyen D H, et al. 2021. Local field potentials in a pre-motor region predict learned vocal sequences. PLoS Computational Biology, 17(9):e1008100.
    Carrillo G D, Doupe A J. 2004. Is the songbird Area X striatal, pallidal, or both? An anatomical study. The Journal of Comparative Neurology, 473(3):415–437.
    Catchpole C K. 1987. Bird song, sexual selection and female choice. Trends in Ecology & Evolution, 2(4):94–97.
    Colquitt B M, Merullo D P, Konopka G, et al. 2021. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science, 371(6530):eabd9704.
    Davenport M H, Jarvis E D. 2023. Birdsong neuroscience and the evolutionary substrates of learned vocalization. Trends in Neurosciences, 46(2):97–99.
    Davis C, Kleinman J T, Newhart M, et al. 2008. Speech and language functions that require a functioning Broca’s area. Brain and Language, 105(1):50–58.
    Dichter B K, Breshears J D, Leonard M K, et al. 2018. The control of vocal pitch in human laryngeal motor cortex. Cell, 174(1):21–31. e9.
    Doupe A J, Kuhl P K. 1999. Birdsong and human speech:common themes and mechanisms. Annual Review of Neuroscience, 22:567–631.
    Dugas-Ford J, Rowell J J, Ragsdale C W. 2012. Cell-type homologies and the origins of the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 109(42):16974–16979.
    Düring D N, Ziegler A, Thompson C K, et al. 2013. The songbird syrinx morphome:a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC Biology, 11(1):1–27.
    Elemans C P, Mead A F, Rome L C, et al. 2008. Superfast vocal muscles control song production in songbirds. PLoS ONE, 3(7):1–6. e2581.
    Esposito A, Demeurisse G, Alberti B, et al. 1999. Complete mutism after midbrain periaqueductal gray lesion. Neuroreport, 10(4):681–685.
    Farries M A, Perkel D J. 2002. A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. The Journal of Neuroscience, 22(9):3776–3787.
    Fee M S, Shraiman B, Pesaran B, et al. 1998. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395:67–71.
    Flinker A, Korzeniewska A, Shestyuk A Y, et al. 2015. Redefining the role of Broca’s area in speech. Proceedings of the National Academy of Sciences of the United States of America, 112(9):2871–2875.
    Franchini L F. 2021. Genetic mechanisms underlying cortical evolution in mammals. Frontiers in Cell and Developmental Biology, 9:1–27. 591017.
    Gajardo-Vidal A, Lorca-Puls D L, Team P, et al. 2021. Damage to Broca’s area does not contribute to long-term speech production outcome after stroke. Brain, 144(3):817–832.
    Gedman G L, Biegler M T, Haase B, et al. 2022. Convergent gene expression highlights shared vocal motor microcircuitry in songbirds and humans. BioRxiv:The Preprint Server for Biology. [J/OL]. [2022-07-02]. https://www.biorxiv.org/content/10.1101/ 2022.07.01.498177v1.
    Goller F, Larsen O N. 1997. A new mechanism of sound generation in songbirds. Proceedings of the National Academy of Sciences of the United States of America, 94(26):14787–14791.
    Goller F, Larsen O N. 2002. New perspectives on mechanisms of sound generation in songbirds. Journal of Comparative Physiology A, 188(11/12):841–850.
    Gordon R L, Ravignani A, Bruno J H, et al. 2021. Linking the genomic signatures of human beat synchronization and learned song in birds. Philosophical Transactions of the Royal Society of London Series B:Biological Sciences, 376(1835):1–12. 20200329.
    Hessler N A, Okanoya K. 2018. Physiological identification of cortico-striatal projection neurons for song control in Bengalese finches. Behavioural Brain Research, 349:37–41.
    Holstege G, Subramanian H H. 2016. Two different motor systems are needed to generate human speech. The Journal of Comparative Neurology, 524(8):1558–1577.
    Ishibashi A, Fujishima I. 2012. Lesion of the nucleus solitarius leads to impaired laryngeal sensation in bulbar palsy patients. Journal of Stroke and Cerebrovascular Diseases:The Official Journal of National Stroke Association, 21(3):174–180.
    Jarvis E D. 2004. Learned birdsong and the neurobiology of human language. Annals of the New York Academy of Sciences, 1016:749–777.
    Jarvis E D. 2007. Neural systems for vocal learning in birds and humans:a synopsis. Journal of Ornithology, 148(1):35–44.
    Jarvis E D. 2019. Evolution of vocal learning and spoken language. Science, 366(6461):50–54.
    Jarvis E D, Nottebohm F. 1997. Motor-driven gene expression. Proceedings of the National Academy of Sciences of the United States of America, 94(8):4097–4102.
    Johnson M D, Ojemann G A. 2000. The role of the human thalamus in language and memory:evidence from electrophysiological studies. Brain and Cognition, 42(2):218–230.
    Lukacova K, Hamaide J, Baciak L, et al. 2022. Striatal injury induces overall brain alteration at the pallial, thalamic, and cerebellar levels. Biology, 11(3):425.
    Luo M, Perkel D J. 1999. A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. The Journal of Neuroscience, 19(15):6700–6711.
    Marler P, Doupe A J. 2000. Singing in the brain. Proceedings of the National Academy of Sciences of the United States of America, 97(7):2965–2967.
    Medina C A, Vargas E, Munger S J, et al. 2022. Vocal changes in a zebra finch model of Parkinson’s disease characterized by alpha-synuclein overexpression in the song-dedicated anterior forebrain pathway. PLoS ONE, 17(5):e0265604.
    Merchant H, de Lafuente V, Pe?a-Ortega F, et al. 2012. Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Progress in Neurobiology, 99(2):163–178.
    Miller M N, Cheung C Y J, Brainard M S. 2017. Vocal learning promotes patterned inhibitory connectivity. Nature Communications, 8(1):1–9. 2105.
    Mooney R. 2022. Birdsong. Current Biology, 32(20):R1090–R1094.
    Moorman S, Ahn J R, Kao M H. 2021. Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity. Current Biology, 31(12):2619–2632. e4.
    Neef N E, Prima?in A, von Gudenberg A W, et al. 2021. Two cortical representations of voice control are differentially involved in speech fluency. Brain Communications, 3(2):fcaa232.
    Nicholson D A, Roberts T F, Sober S J. 2018. Thalamostriatal and cerebellothalamic pathways in a songbird, the Bengalese finch. The Journal of Comparative Neurology, 526(9):1550–1570.
    Nottebohm F. 1991. Reassessing the mechanisms and origins of vocal learning in birds. Trends in Neurosciences, 14(5):206–211.
    Pfenning A R, Hara E, Whitney O, et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 346(6215):1256846.
    Prather J F, Okanoya K, Bolhuis J J. 2017. Brains for birds and babies:Neural parallels between birdsong and speech acquisition. Neuroscience & Biobehavioral Reviews, 81(Part B):225– 237.
    Reiner A, Perkel D J, Bruce L L, et al. 2004. Revised nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative Neurology, 473(3):377–414.
    Riede T, Goller F. 2010. Peripheral mechanisms for vocal production in birds-differences and similarities to human speech and singing. Brain and Language, 115(1):69–80.
    Ríos-Chelén A A, Garcia C M. 2007. Responses of a sub-oscine bird during playback:effects of different song variants and breeding period. Behavioural Processes, 74(3):319–325.
    Sasaki A, Sotnikova T D, Gainetdinov R R, et al. 2006. Social context-dependent singing-regulated dopamine. The Journal of Neuroscience, 26(35):9010–9014.
    Schmidt M F, Martin Wild J. 2014. The respiratory-vocal system of songbirds:anatomy, physiology, and neural control. Progress in Brain Research, 212:297–335.
    Simmonds A J, Leech R, Iverson P, et al. 2014. The response of the anterior striatum during adult human vocal learning. Journal of Neurophysiology, 112(4):792–801.
    Simonyan K. 2014. The laryngeal motor cortex:its organization and connectivity. Current Opinion in Neurobiology, 28:15–21.
    Simonyan K, Horwitz B. 2011. Laryngeal motor cortex and control of speech in humans. The Neuroscientist:A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(2):197–208.
    Simpson H B, Vicario D S. 1990. Brain pathways for learned and unlearned vocalizations differ in zebra finches. The Journal of Neuroscience, 10(5):1541–1556.
    Sizemore M, Perkel D J. 2008. Noradrenergic and GABA B receptor activation differentially modulate inputs to the premotor nucleus RA in zebra finches. Journal of Neurophysiology, 100(1):8–18.
    Veit L, Tian L Y, Monroy H C J, et al. 2021. Songbirds can learn flexible contextual control over syllable sequencing. eLife, 10:e61610.
    Wild J M, Li D, Eagleton C. 1997. Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). The Journal of Comparative Neurology, 377(3):392–413.
    Williams H, McKibben J R. 1992. Changes in stereotyped central motor patterns controlling vocalization are induced by peripheral nerve injury. Behavioral and Neural Biology, 57(1):67–78.
    Winograd C, Clayton D, Ceman S. 2008. Expression of fragile X mental retardation protein within the vocal control system of developing and adult male zebra finches. Neuroscience, 157(1):132–142.
    Woolley S C. 2016. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus. Journal of Neurophysiology, 116(6):2831–2840.
    Woolley S C, Rajan R, Joshua M, et al. 2014. Emergence of context-dependent variability across a basal ganglia network. Neuron, 82(1):208–223.
    Yu A C, Margoliash D. 1996. Temporal hierarchical control of singing in birds. Science, 273(5283):1871–1875.
    Zemel B M, Nevue A A, Dagostin A, et al. 2021. Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control. Nature Communications, 12(1):6762.
    王松华, 李东风, 孟玮. 2022. 鸣禽模型在语言学习中承担独特的生物学角色. 生物化学与生物物理进展, 49(5):874–882.
    曾贤燕, 李东风. 2013. 成年雄性斑胸草雀前脑与中脑对习得性发声控制的侧别差异. 动物学研究, 34(1):1–7.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张琨,张宇桃,王松华,孟玮.2024.鸣禽与人类发声器官及发声行为神经控制通路的比较.动物学杂志,59(1):147-157.

复制
文章指标
  • 点击次数:271
  • 下载次数: 1406
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-18
  • 在线发布日期: 2024-02-05