鸟类形态特征的同质性比较
作者:
作者单位:

1.中国科学技术大学生命科学与医学部 合肥 230026;2.中国科学院动物研究所动物进化与系统学院重点实验室 北京 100010;3.瑞典自然历史博物馆 瑞典斯德哥尔摩 50007

作者简介:

郑雪星,女,硕士研究生;研究方向:动物学;E-mail:snowstarzheng@mail.ustc.edu.cn。

基金项目:

国家自然科学基金重点国际(地区)合作项目(No. 32020103005);


Patterns of Variation in Levels of Homoplasy of the Avian Morphological Characters
Author:
Affiliation:

1.University of Science and Technology of China, Hefei 230026; 2.Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 3.Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 50007, Sweden

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鸟类作为脊椎动物中的主要类群之一,其内部演化关系一直是动物学研究的重点。形态特征及分子特征在推断鸟类内部类群间的系统发育关系时被广泛应用,但长久以来受制于同质性的影响,不同形态特征难以得到一致的系统发育关系。随着基因组测序技术及分析方法的快速发展,基于大量DNA序列数据所建的物种树成为领域内普遍认可的鸟类系统发育关系。在此基础之上,重新挖掘形态特征的研究价值成为可能。本研究基于Prum发表于2015年的鸟类科级水平系统发育树,比较了不同形态特征同质性水平的差异,讨论了形态特征对于提高分子特征系统发育信号及分子树支持率的作用。研究发现,不同种类形态特征的同质性水平存在显著的差异,以一致性指数为标准,杂项特征(包括神经、肌腱及肠道的特征)的得分显著高于骨学特征和肌学特征(P < 0.01),颅骨特征的得分显著高于非颅骨、躯干及腿部特征的得分(P < 0.05);加入形态特征能够显著提高分子特征的系统发育信号(P < 0.05),也提高了分子树的支持率。综上所述,不同的形态特征在同质性水平的得分上具有显著差异,在分子特征上加入形态特征既能够提高分子特征的系统发育信号,也能够提高分子树的支持率。

    Abstract:

    [Objectives] As one of the major groups of vertebrates, the evolutionary relationship of birds has been one of the main focuses of ornithological research. Morphological and molecular characters have been widely used to infer phylogenetic relationships in birds, but morphological characters have long been limited by homoplasy, making it difficult to draw consistent conclusions about phylogenetic relationships. However, benefiting from the molecular data and sophisticated analysis methods, we have gradually reached a consensus on the phylogenetic relationships of birds in recent years. On this basis, it is necessary to re-explore the research value of the neglected morphological data. Therefore, we aim to investigative whether there is a significant difference in the level of homoplasy of different kinds of morphological characters. We proceed to exploring the role of morphological characters with a low level of homoplasy in improving the phylogenetic signals of the molecular data and the level of support on the molecular tree. [Methods] Based on a reliable molecular phylogenetic tree by Prum published in 2015 (Prum tree) and an avian morphological dataset by Livezey & Zusi published in 2006 (Livezey & Zusi morphological data), we mapped the Livezey & Zusi morphological data to the Prum tree using PAUP* 4.0a and calculated the score for the level of homoplasy. We performed the Mann-Whitney U test to explore whether morphological characters are significantly different in their levels of homoplasy. Additionally, we performed a principal component analysis to determine if there was an interconnection between the morphological characters of homoplasy. Lastly, we added the filtered low homoplasy level morphological characters (specifically those with a CI ≥ 0.5 when mapped to the Prum tree) to Hackett’s molecular data. Then we rebuilt the tree using the maximum parsimony method and mapped the character (molecular or morphological character) to the tree (molecular or combined tree). After we got homoplasy outcomes of the mapping above, we performed the Mann-Whitney U test to compare the homoplasy outcomes. Meanwhile, we compared the bootstrap scores for each branch of the two trees (molecular and combined tree) to determine whether the inclusion of morphological data would have an impact on the level of support. [Results] We found different levels of homoplasy in morphological characters, as indicated by the consistency index of the miscellaneous characters scored significantly larger than those of osteological and myological characters (P < 0.01, Table 2), and that of cranial characters was significantly larger than those of the postcranial, body and leg characters (P < 0.05, Table 2). Nevertheless, the principal component analysis indicated that morphological characters are not easily distinguishable from each other. Additionally, adding morphological characters with low levels of homoplasy significantly increased the phylogenetic signals of the molecular data (P < 0.05, Appendix 3) and increased the level of support on branch of the molecular tree. [Conclusion] In summary, morphological characters show different levels of homoplasy, and certain groups of morphological characters can increase the phylogenetic signal of the molecular characters.

    参考文献
    Baum D A, Smith S D. 2012. Tree Thinking. An Introduction to Phylogenetic Biology. Greenwood Village:Roberts and Company Publishers, 20–100.
    Beecher W J. 1953. A phylogeny of the oscines. The Auk, 70(3):270–333.
    Ericson P G P, Anderson C L, Britton T, et al. 2006. Diversification of Neoaves:integration of molecular sequence data and fossils. Biology Letters, 2(4):543–547.
    Farris J S. 1989. The retention index and the rescaled consistency index. Cladistics, 5(4):417–419.
    Fjelds? J, Ericson P G P. 2020. The Largest Avian Radiation. Barcelona:Lynx Edicions, 35–38.
    Graur D. 1993. Molecular phylogeny and the higher classification of eutherian mammals. Trends in Ecology & Evolution, 8(4):141–147.
    Hackett S J, Kimball R T, Reddy S, et al. 2008. A phylogenomic study of birds reveals their evolutionary history. Science, 320(5884):1763–1768.
    Hebert P D N, Cywinska A, Ball S L, et al. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B:Biological Sciences, 270(1512):313–321.
    Jarvis E D, Mirarab S, Aberer A J, et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215):1320–1331.
    Klassen G J, Mooi R D, Locke A. 1991. Consistency indices and random data. Systematic Biology, 40(4):446–457.
    Lee M S Y, Camens A B. 2009. Strong morphological support for the molecular evolutionary tree of placental mammals. Journal of Evolutionary Biology, 22(11):2243–2257.
    Livezey B C, Zusi R L. 2006. Phylogeny of Neornithes. Bulletin of Carnegie Museum of Natural History, 37:1–544.
    Livezey B C, Zusi R L. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves:Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society, 149(1):1–95.
    McCormack J E, Harvey M G, Faircloth B C, et al. 2013. A phylogeny of birds based on over 1, 500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE, 8(1):e54848.
    Mickevich M F, Lipscomb D. 1991. Parsimony and the choice between different transformations for the same character set. Cladistics, 7(2):111–139.
    Prum R O, Berv J S, Dornburg A, et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526(7574):569–573.
    Sansom R S, Wills M A, Williams T. 2017. Dental data perform relatively poorly in reconstructing mammal phylogenies:morphological partitions evaluated with molecular benchmarks. Systematic Biology, 66(5):813–822.
    Sibley C G, Monroe B L. 1990. Distribution and Taxonomy of Birds of the World. New Haven:Yale University Press, 1–1111.
    Springer M S, Burk-Herrick A, Meredith R, et al. 2007. The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology, 56(4):673–684.
    Tautz D, Arctander P, Minelli A, et al. 2002. DNA points the way ahead in taxonomy. Nature, 418(6897):479.
    Wang M, O’Connor J K, Xu X, et al. 2019. A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature, 569(7755):256–259.
    Xie J M, Chen Y R, Cai G J, et al. 2023. Tree Visualization By One Table (tvBOT):a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research, 51(W1):W587–W592.
    国会艳. 2006. 雀形目38种鸟类分子系统发育关系的初步研究. 哈尔滨:东北林业大学硕士学位论文, 1–4.
    李华兵. 2009. 中国鸟类检索查询系统的构建. 长沙:中南林业科技大学硕士学位论文, 1–5.
    刘涛. 2019. 蓝冠噪鹛分类地位及其系统演化研究. 南昌:江西农业大学硕士学位论文, 1–3.
    唐璇. 2020. 基于鸣声、羽色和形态对灰眶雀鹛亚种分化的研究. 广州:广州大学硕士学位论文, 2–3.
    张淑霞, 杨岚, 杨君兴. 2004. 近代鸟类分类与系统发育研究进展. 动物分类学报, 29(4):675–682.
    朱玉贤, 李毅, 郑晓峰. 2019. 现代分子生物学. 5版. 北京:高等教育出版社, 1–20.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑雪星,Per G. P. Ericson,屈延华.2024.鸟类形态特征的同质性比较.动物学杂志,59(3):321-336.

复制
文章指标
  • 点击次数:1363
  • 下载次数: 9752
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-06-01
  • 在线发布日期: 2024-06-17