北京地区红隼的迁徙路线和活动区域
作者:
作者单位:

北京市野生动物救护中心 北京 101300

作者简介:

张微,女,中级工程师;研究方向:生物多样性保护;E-mail:zwei3191@163.com。


Migration Route and Home Range of Common Kestrel Falco tinnunculus in Beijing, China
Author:
Affiliation:

Beijing Wildlife Rescue and Rehabilitation Center, Beijing 101300, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    红隼(Falco tinnunculus)被列为国家二级重点保护野生动物,是能同时适应农村和城市环境的小型猛禽,对维持城市生态系统稳定具有重要意义。2022年4月至7月,为在北京救助的7只红隼佩戴了卫星追踪器,追踪其活动轨迹,依据追踪的动物活动位点数据,采用净平方位移-时间曲线依次对各红隼的迁徙模式进行了判别,深入分析了迁徙红隼的迁徙时间、距离和路线等,并采用核心密度法分别计算了迁徙及留居型红隼95%及50%活动区面积。研究结果表明,在北京地区红隼的迁徙模式为部分迁徙,追踪的7只红隼个体(N01 ~ N07)中,4只为留鸟,1只为迁徙鸟,2只居留类型无法准确判断。N01为迁徙红隼,其度夏地和越冬地分别在内蒙古锡林郭勒盟和河北廊坊,此红隼秋季迁徙速度明显高于春季,其春季迁徙距离551 km,历时25 d,平均迁徙速度为22 km/d,而秋季迁徙距离412 km,历时2 d,平均迁徙速度为203 km/d,河北承德滦平县是其春季迁徙的重要中途停歇地。不同红隼个体间95%及50%活动区面积均存在较大差异,迁徙红隼N01 95%、50%活动区面积在度夏区分别为93.10 km2、17.50 km2,在越冬区分别为7.03 km2、0.99 km2;留居型红隼95%、50%活动区面积均值分别为1 165.34 km2、178.71 km2(n = 4),其中最大95%、50%活动区面积分别为4 320.26 km2(N02)、648.22 km2(N02),最小95%、50%活动区面积分别为2.80 km2(N03)、0.29 km2(N03)。本研究揭示了北京地区红隼的迁徙模式、迁徙路线、重要停歇地及活动区状况,为红隼的针对性保护和管理提供了科学依据。

    Abstract:

    [Objectives] The Common Kestrel Falco tinnunculus is listed as a national second-class protected animal in China. It is a small raptor that can adapt to both rural and urban environments, and it is of great significance to maintain the stability of urban ecosystem. [Methods] From April to July, 2022, seven Common Kestrels rescued in Beijing were successfully fitted with satellite trackers, and their trajectories were tracked. Based on the tracking data, the migration patterns of each Common Kestrel were identified by using the net squared displacement (NSD)-time curve. The specific migration time, distance and route of migrating Common Kestrel were further analyzed. In addition, 95% and 50% home ranges of migrating and resident Common Kestrels were calculated respectively by using the kernel density estimation (KDE) in the software R 4.1.0. [Results] We found the migration pattern of Common Kestrels in Beijing was partial migration. Among the 7 ind tracked, 4 ind were resident, 1 ind was migratory, and 2 ind could not be determined. The migrating Common Kestrel (N01) migrated from winter habitats in Langfang, Hebei to summer habitats in Xilin Gol, Inner Mongolia, in spring (Fig. 2). Its spring migration distance was 551 km, which lasted for 25 d, with an average speed of 22 km/d, and its autumn migration speed was significantly faster than that in spring, with a total migration distance of 412 km, which lasted for 2 d, with an average migration speed of 203 km/d. Luanping County in Hebei was an important migration stopover during spring migration. The kernel density estimation revealed that there were obvious differences in 95% and 50% home ranges among individuals. In summer habitats, home ranges of the migrating Common Kestrel (N01) were 93.10 km2 (95%) and 17.50 km2 (50%), while in winter habitats, those were 7.03 km2 (95%) and 0.99 km2 (50%). The average home ranges of the resident Common Kestrels were 1 165.34 km2 (95%, n = 4) and 178.71 km2 (50%, n = 4). N02 had the largest home ranges, with an area of 4 320.26 km2 (95%) and 648.22 km2 (50%), while N03 had the smallest home ranges, with an area of 2.80 km2 (95%) and 0.29 km2 (50%, Table 2). [Conclusion] The research reveals migratory behaviors, routes, important migration stopover and home ranges of Common Kestrel in Beijing, which provides scientific basis for the targeted protection and management of the Common Kestrel.

    参考文献
    Barron D G, Brawn J D, Weatherhead P J. 2010. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution, 1(2):180–187.
    Benhamou S. 2004. How to reliably estimate the tortuosity of an animal’s path:straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2):209–220.
    Bildstein K L. 2006. Migrating Raptors of the World:Their Ecology and Conservation. Ithica, USA:Cornell University Press.
    Brochet A L, Van Den Bossche W, Jones V R, et al. 2019. Illegal killing and taking of birds in Europe outside the Mediterranean:assessing the scope and scale of a complex issue. Bird Conservation International, 29(1):10–40.
    Bunnefeld N, B?rger L, van Moorter B, et al. 2011. A model-driven approach to quantify migration patterns:individual, regional and yearly differences. The Journal of Animal Ecology, 80(2):466– 476.
    Chapman B B, Br?nmark C, Nilsson J ?, et al. 2011. The ecology and evolution of partial migration. Oikos, 120(12):1764–1775.
    de Grissac S, B?rger L, Guitteaud A, et al. 2016. Contrasting movement strategies among juvenile albatrosses and petrels. Scientific Reports, 6:26103.
    Deng X Q, Zhao Q S, Fang L, et al. 2019. Spring migration duration exceeds that of autumn migration in Far East Asian Greater White-fronted Geese (Anser albifrons). Avian Research, 10(1):83–93.
    Donázar J A, Cortés-Avizanda A, Fargallo J A, et al. 2016. Roles of raptors in a changing world:from flagships to providers of key ecosystem services. Ardeola, 63(1):181–234.
    Franke A. 2017. Priorities for Gyrfalcon Research:Food, Weather, and Phenology in a Changing Climate. Applied Raptor Ecology:Essentials from Gyrfalcon Research. Idaho:The Peregrine Fund.
    Holte D, K?ppen U, Schmitz-Ornés A. 2016. Partial migration in a central European Raptor species:an analysis of ring re-encounter data of Common Kestrels Falco tinnunculus. Acta Ornithologica, 51(1):39–54.
    Kang S G, Hur W H, Lee I S. 2015. Home-range of the Common Kestrel (Falco tinnunculus) in the suburban area of Busan. Korean Journal of Environment and Ecology, 29(2):162–173.
    Kranstauber B, Smolla M, Scharf A K. 2023. move:Visualizing and analyzing animal track data. R package version 4.1.0. [R/OL]. [2023-06-05]. https://bartk.gitlab.io/move/.
    Martens F R, Pfeiffer M B, Downs C T, et al. 2018. Post-fledging movement and spatial ecology of the endangered Cape Vulture (Gyps coprotheres). Journal of Ornithology, 159(4):913–922.
    McClure C J W, Westrip J R S, Johnson J A, et al. 2018. State of the world’s raptors:distributions, threats, and conservation recommendations. Biological Conservation, 227:390–402.
    McLean D J, Skowron Volponi M A. 2018. Trajr:an R package for characterisation of animal trajectories. Ethology, 124(6):440–448.
    Millspaugh J J, Marzluff J M. 2001. Radio-Tracking and Animal Populations. California, USA:Academic Press.
    Morant J, Abad-Gómez J M, álvarez T, et al. 2020. Winter movement patterns of a globally endangered avian scavenger in south-western Europe. Scientific Reports, 10:17690.
    Pretorius M D, Leeuwner L, Tate G J, et al. 2020. Movement patterns of lesser flamingos Phoeniconaias minor:nomadism or partial migration? Wildlife Biology, 2020(3):1–11.
    R Core Team. 2022. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [R/OL]. [2023-06-05]. https://www.R-project.org.
    Rotics S, Kaatz M, Turjeman S, et al. 2018. Early arrival at breeding grounds:causes, costs and a trade-off with overwintering latitude. The Journal of Animal Ecology, 87(6):1627–1638.
    Shamoun-Baranes J, Baharad A, Alpert P, et al. 2003. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. Journal of Avian Biology, 34(1):97–104.
    Signer J, Fieberg J, Avgar T. 2019. Animal movement tools (amt):R package for managing tracking data and conducting habitat selection analyses. Ecology and Evolution, 9(2):880–890.
    Smith R J, Moore F R. 2005. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behavioral Ecology and Sociobiology, 57(3):231–239.
    Spitz D B, Hebblewhite M, Stephenson T R. 2017. ‘MigrateR’:extending model-driven methods for classifying and quantifying animal movement behavior. Ecography, 40(6):788–799.
    Stier A, Ricardou A, Uriot S, et al. 2017. Breeding season home range and migration of the agami heron (Agamia agami). Waterbirds, 40(3):289–296.
    Worton B J. 1995. Using Monte Carlo simulation to evaluate kernel-based home range estimators. The Journal of Wildlife Management, 59(4):794–800.
    Zurell D, von Wehrden H, Rotics S, et al. 2018. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Frontiers in Ecology and Evolution, 6:79.
    蔡其侃. 1988. 北京鸟类志. 北京:北京出版社, 124–128.
    杜利民, 马鸣. 2013. 黄爪隼和红隼的繁殖习性记录. 四川动物, 32(5):766–769.
    嘎日迪, 樊淑娟, 曹垒, 等. 2022. 东方白鹳幼鸟渤海湾越冬群体的迁徙策略. 生物多样性, 30(5):58–65.
    高玮. 2002. 中国隼形目鸟类生态学. 北京:科学出版社, 160–170.
    李晓京. 2005. 北京山区猛禽生存现状及保护对策. 北京:北京林业大学硕士学位论文.
    潘永红. 2009. 红隼繁殖期种内关系和种间关系研究. 长春:东北师范大学硕士学位论文.
    万冬梅, 高玮, 赵匠, 等. 2002. 辽宁猛禽迁徙规律的研究. 东北师大学报:自然科学版, 34(2):78–83.
    王磊, 刘强, 杨俊杰, 等. 2020. 基于卫星跟踪的钳嘴鹳家域研究. 南京林业大学学报:自然科学版, 44(6):33–38.
    王翌. 2020. 基于形态、基因和行为的红隼配偶选择研究. 长春:东北师范大学博士学位论文.
    相桂权, 冯贺林, 高玮, 等. 1993. 红隼的繁殖习性及领域选择的研究. 动物学杂志, 28(2):38–43.
    熊李虎, 陆健健. 2006. 上海郊区冬季红隼行为时间分配. 生态学杂志, 25(4):467–470.
    熊李虎, 童春富, 陆健健. 2005. 上海郊区红隼种群密度及其变化. 四川动物, 24(4):121–124.
    徐沛卓, 许青. 2023. 基于卫星追踪的东北地区红隼冬季家域及移动特点. 野生动物学报, 44(3):603–614.
    薛帅. 2021. 野生鸟类救助后放归的注意事项. 现代农村科技, (3):101–102.
    杨岚. 1996. 云南鸟类志:上卷 非雀形目. 昆明:云南科技出版社, 234–237.
    杨向明, 高建兴, 常孜苗. 1995. 红隼的生态和繁殖生物学观察. 动物学杂志, 30(1):23–26.
    张晋东, Vanessa HULL, 欧阳志云. 2013. 家域研究进展. 生态学报, 33(11):3269–3279.
    张万福. 1993. 台湾鸟类彩色图鉴. 台中:中台科学技术出版社, 83.
    郑光美. 2017. 中国鸟类分类与分布名录. 3版. 北京:科学出版社, 162–163.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张微,田颖,张亚琼,李杰,胡严.2024.北京地区红隼的迁徙路线和活动区域.动物学杂志,59(3):349-357.

复制
文章指标
  • 点击次数:1222
  • 下载次数: 9784
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-18
  • 在线发布日期: 2024-06-17