人工取香操作对圈养马麝的行为生理效应
作者:
作者单位:

1.中国人民大学环境学院 北京 100872;2.西昌学院动物科技学院 西昌 615000;3.西藏大学生态环境学院 拉萨 850000;4.生态环境部环境与经济政策研究中心 北京 100029

作者简介:

黄维,男,硕士研究生;研究方向:动物生态;E-mail:huangwei6267@ruc.edu.cn。

基金项目:

国家自然科学基金项目(No. 32170489,32211530443);


Behavioral-Physiological Effects from Musk-Extraction Operation on Captive Alpine Musk Deer Moschus chrysogaster
Author:
Affiliation:

1.School of Environment and Natural Resources, Renmin University of China, Beijing 100872; 2.School of Animal Science, Xichang University, Xichang 615000; 3.College of Ecology and Environment, Tibet University, Lhasa 850000; 4.Policy Research Center for Environment and Economy, Ministry of Ecology and Environment, Beijing 100092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    驯养是濒危麝类动物(Moschus spp.)迁地保育和可持续供给药用麝香的有效方式,具相关资格的麝养殖单位对圈养麝进行人工取香是每年进行的麝类驯养和麝香生产管理活动之一。本研究对甘肃省兴隆山马麝(M. chrysogaster)繁育中心的46头参与取香的雄性马麝进行了行为取样、同期粪样采集及粪样皮质醇代谢物水平的检测,确定人工取香操作对不同年龄的圈养马麝粪样皮质醇代谢物水平及行为活动水平的效应。结果显示,成体马麝取香操作后的粪样皮质醇代谢物水平为(85.28 ± 5.00)ng/g,显著高于操作前的(56.08 ± 8.64)ng/g(P < 0.05),而且其水平在操作后的3 d内持续升高,第4天才恢复至取香前水平;老年马麝在取香前后其粪样皮质醇代谢物水平无显著差异(P > 0.05)。老年马麝与成体马麝的活动水平均在取香操作后下降,并于取香操作后第2天达到最低值(老年马麝59.04% ± 4.54%,成体马麝73.03% ± 7.71%),随后逐步恢复,但仅老年马麝活动水平显著低于操作前(74.09% ± 3.97%)(P < 0.05)。本研究表明,急性人工操作可导致圈养马麝产生行为生理应激反应,应激强度存在年龄差异,相比老年马麝,成体马麝对人工操作的生理应激响应更加强烈。在驯养实践中,可监测取香前后马麝的活动水平来即时评估马麝的应激强度,并通过取香后单独圈养马麝、降低取香操作强度及利用慢性应激提升马麝驯化度。

    Abstract:

    [Objectives] Musk-extraction from captive Alpine Musk Deer Moschus chrysogaster by Musk Deer breeding unit with relevant qualificationshas become an effective measure to provide musk sustainably. However, the related musk-extraction operation (MEO) may cause behavioral-physiological stress on Musk Deer because it involves manipulations such as capturing, holding of Musk Deer and musk-extracting handling. [Methods] This study was conducted in the breeding Center of Musk Deer in Xinglongshan, Gansu Province, between November and December, 2020. We determined the levels of fecal cortisol metabolites and activity of 46 male Musk Deer with MEO. Generalized linear model and analysis of variance were used to explore the potential behavioral-physiological effects from MEO on Musk Deer of different ages. [Results] We found that the level of fecal cortisol metabolites in adult Musk Deer after MEO (85.28 ± 5.00 ng/g) was significantly higher than before (56.08 ± 8.64 ng/g) (P < 0.05, Fig. 1), and it increased after MEO, peaking on the third day after MEO and recovering to normal level on the fourth day after MEO (Table 1). However, cortisol level in elderly Musk Deer was not affected by MEO (P < 0.05, Fig. 1). Activity level in elderly and adult Musk Deer decreased after MEO and reached the lowest values on the second day after MEO (elderly:59.04% ± 4.54%, adult:73.03% ± 7.71%) and then gradually recovered. However, only the elderly Musk Deer show significantly lower level of activity than that before MEO (74.09% ± 3.97%, P < 0.05, Table 2). [Conclusion] It was found that the MEO can cause behavioral-physiological stress on captive male Musk Deer, in which there existed the significant differences between age-classes.

    参考文献
    Berga S L. 2008. Stress and reprodution:a tale of false dichotomy? Endocrinology, 149(3):867–868.
    Browning R, Leite-Browning M L. 2013. Comparative stress responses to short transport and related events in Hereford and Brahman steers. Journal of Animal Science, 91(2):957–969.
    Champagne C D, Houser D S, Costa D P, et al. 2012. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in northern elephant seals. PLoS ONE, 7(5):e38442.
    Dembiec D P, Snider R J, Zanella A J. 2004. The effects of transport stress on tiger physiology and behavior. Zoo Biology, 23(4):335–346.
    Dickens M J, Delehanty D J, Michael R L. 2010. Stress:an inevitable component of animal translocation. Biological Conservation, 143(6):1329–1341.
    El-Bahr S M, Kahlbacher H, Rausch W D, et al. 2005. Excretion of catecholamines (adrenaline and noradrenaline) in domestic livestock. Wiener Tierarztliche Monatsschrift, 92(9):207–213.
    Fisher A D, Niemeyer D O, Lea J M, et al. 2010. The effects of 12, 30, or 48 hours of road transport on the physiological and behavioral responses of sheep. Journal of Animal Science, 88(6):2144–2152.
    Fowler G S. 1999. Behavioral and hormonal responses of Magellanic penguins (Spheniscus magellanicus) to tourism and nest site visitation. Biological Conservation, 90(2):143–149.
    Ganswindt A, Palme R, Heistermann M, et al. 2003. Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. General and Comparative Endocrinology, 134(2):156–166.
    Grandin T. 1997. Assessment of stress during handling and transport. Journal of Animal Science, 75(1):249–257.
    Hu X L, Wei Y T, Huang S L, et al. 2018. Effects of breeding center, age and parasite burden on fecal triiodothyronine levels in forest musk Deer. PLoS ONE, 13(10):e0205080.
    Lynn S E, Kern M D. 2017. Ecologically relevant cooling early in life alters prefledging adrenocortical response in free-living songbirds. Physiological and Biochemical Zoology, 90(1):118–123.
    Meng X X, Gong B C, Ma G, et al. 2011. Quantified analyses of musk deer farming in China:a tool for sustainable musk production and ex situ conservation. Asian-Australasian Journal of Animal Sciences, 24(10):1473–1482.
    Meng X X, Zhou C Q, Hu J C, et al. 2006. Musk Deer farming in China. Animal Science, 82(1):1–6.
    Owen M A, Swaisgood R R, Czekala N M, et al. 2004. Monitoring stress in captive giant pandas (Ailuropoda melanoleuca):behavioral and hormonal responses to ambient noise. Zoo Biology, 23(2):147–164.
    Romero L M. 2004. Physiological stress in ecology:lessons from biomedical research. Trends in Ecology & Evolution, 19(5):249–255.
    Sapolsky R M, Romero L M, Munck A U. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1):55–89.
    Snyder R J, Perdue B M, Powell D M, et al. 2012. Behavioral and hormonal consequences of transporting giant pandas from China to the United States. Journal of Applied Animal Welfare Science, 15(1):1–20.
    Staley M, Conners M G, Hall K, et al. 2018. Linking stress and immunity:Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Hormones and Behavior, 102:55–68.
    Waits L P, Paetkau D. 2005. Noninvasive genetic sampling tools for wildlife biologists:a review of applications and recommendations for accurate data collection. Journal of Wildlife Management, 69(4):1419–1433.
    Wasser S K, Hunt K E, Brown J L, et al. 2000. A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparative Endocrinology, 120(3):260–275.
    Wingfield J C, Kitaysky A S. 2002. Endocrine responses to unpredictable environmental events:stress or anti-stress hormones? Integrative and Comparative Biology, 42(3):600–609.
    Yang L L, Wang W X, Huang S L, et al. 2019. Individual stress responses of white rhinoceros (Ceratotherium simum) to transport:implication for a differential management. Global Ecology and Conservation, 17:e00588.
    Yang Q S, Meng X X, Xia L, et al. 2003. Conservation status and causes of decline of musk deer (Moschus spp.) in China. Biological Conservation, 109(3):333–342.
    Yang S, Zhang M, Li Y, et al. 2020. The effect of musk extraction procedures on the stress response of farmed forest musk Deer (Moschus berezovskii). The Journal of Animal and Plant Sciences, 30(6):1424–1434.
    Zhou X, Lv Q X, Qin Y H, et al. 2023. Effects of social stress on the welfare of captive male Alpine musk Deer:Stereotypic behavior, fecal cortisol, and musk secretion. Applied Animal Behaviour Science, 258:105828.
    何岚, 葛兴芳, 刘刚, 等. 2014. 野生动物的应激状态研究及其在物种保护上的应用. 四川动物, 33(1):156–160.
    蒋志刚, 李春旺, 彭建军, 等. 2001. 行为的结构、刚性和多样性. 生物多样性, 9(3):265–274.
    李春旺, 蒋志刚, 曾岩, 等. 2003. 圈养雄性麋鹿血清睾酮和皮质醇含量在发情期的变化. 动物学研究, 24(1):49–52.
    孟秀祥, 冯金朝, 周宜君, 等. 2007. 麝类行为谱的初步建构及行为型的描述性定义. 四川动物, 26(1):46–50.
    孟秀祥, 杨奇森, 冯祚建, 等. 2002a. 圈养马麝夏秋冬活动格局的比较. 兽类学报, 22(2):87–97.
    孟秀祥, 杨奇森, 冯祚建, 等. 2002b. 圈养马麝发情交配后期的日活动格局. 动物学杂志, 37(6):35–42.
    唐丹, 杨波, 张志忠, 等. 2019. 运输对圈养大熊猫应激影响初探. 野生动物学报, 40(3):753–757.
    张慧珍, 王敏, 李吉有, 等. 2009. 林麝养殖中活体取香的方法及步骤. 野生动物, 30(4):175–176.
    周显青, 孙儒泳, 牛翠娟. 2001. 应激对水生动物生长、行为和生理活动的影响. 动物学研究, 22(2):154–158.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄维,吴佳忆,申立泉,周鑫,吕青昕,覃雨虹,袁乃秀,曾凡刚,孟秀祥.2024.人工取香操作对圈养马麝的行为生理效应.动物学杂志,59(3):379-386.

复制
文章指标
  • 点击次数:1037
  • 下载次数: 9383
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 在线发布日期: 2024-06-17