基于非损伤取样法的林麝微卫星遗传多样性分析
作者:
作者单位:

1.北京林业大学生态与自然保护学院 北京 100083;2.中国野生动物保护协会 北京 100714

作者简介:

王喆,女,硕士研究生;研究方向:野生动植物保护与利用;E-mail:wzhe0314@163.com。

基金项目:

国家林业和草原局应急揭榜挂帅项目(No. 202303),国家林业和草原局重点研发项目(No. GLM〔2021〕45),漳州片仔癀药业股份有限公司委托项目(No. YC-20018),北京林业大学杰出青年人才培育计划项目(No. 2019JQ0318);


Microsatellite Genetic Diversity Analysis of Forest Musk Deer Moschus berezovskii Based on Noninvasive Sampling Technology
Author:
Affiliation:

1.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083; 2.China Wildlife Conservation Association, Beijing 100714, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    林麝(Moschus berezovskii)为我国一级重点保护野生动物,为了保护野生林麝种群、满足中医药等行业对天然麝香的需求,我国从20世纪50年代开始人工饲养林麝。维持高的遗传多样性是实现饲养林麝种群可持续增长并放归野外的关键因素。本研究旨在筛选可用于粪便DNA扩增的林麝四碱基微卫星位点,并评估陕西凤县2个饲养林麝种群的遗传多样性。通过搜集文献,共获得25个林麝四碱基微卫星位点,其中19个可从粪便DNA中稳定扩增,且基因分型峰型较好,能用于后续分析,与前人研究相比增加了13个粪便DNA微卫星位点。利用19个微卫星位点,对陕西凤县富民和海兴2个饲养林麝种群共计95只林麝进行遗传多样性分析,其中7个位点多态信息含量超过0.5,为高多态性位点,10个位点符合哈迪-温伯格平衡(P > 0.05)。本研究中的95只林麝共存在99个等位基因,有效等位基因总数为43.880 5,平均Shannon’s信息指数为0.930 6,平均多态信息含量为0.428 3,表明陕西饲养林麝种群具有较高的遗传多样性。平均观测杂合度为0.449 4,平均期望杂合度为0.467 5,观测杂合度低于期望杂合度,种群存在近交的趋势。富民麝场饲养林麝遗传多样性高于海兴麝场,2个种群的遗传分化较小,有较大的基因流,所有林麝个体共来源于4个基因簇,富民麝场的林麝主要来自于1和2基因簇,海兴麝场的林麝主要来自于3和4基因簇。

    Abstract:

    [Objectives] Forest Musk Deer Moschus berezovskii is first class protection wildlife in China. In order to protect the wild Forest Musk Deer population and meet the demand for natural musk in traditional Chinese medicine and other industries, China began to raise Forest Musk Deer artificially in the 1950s. Maintaining high genetic diversity of the population is the key factor to realize the sustainable growth and release of the captive Forest Musk Deer population into the wild. [Methods] In Fengxian County, Shaanxi Province, we collected feces samples from 95 Forest Musk Deer in two captive populations and kept all the samples in a lab refrigerator at﹣20 ℃ until DNA extraction. We selected published tetranucleotide microsatellite loci, then identified microsatellite loci that can be reliably amplified from fecal DNA. The forward primers of these loci were colored with fluorescent dyes and used to analyze the genetic diversity of 95 captive Forest Musk Deer. [Results] Twenty-five tetranucleotide microsatellite loci of Forest Musk Deer were obtained, of which 21 could be steadily amplified from fecal DNA, and two of them had chaotic peaks that were not suitable for analysis (Appendix 1). For the 19 microsatellite loci, there were 7 loci with polymorphism information content > 0.5, which were high polymorphism loci, and 10 loci were consistent with Hardy-Weinberg equilibrium (P > 0.05) (Table 1). Among the two populations studied, 95 individuals had 99 alleles and 43.880 5 effective alleles, the mean of Shannon’s index and polymorphism richness were 0.930 6 and 0.428 3 respectively. The mean observed heterozygosity was 0.449 4, and the mean expected heterozygosity was 0.467 5. The genetic diversity of the Fumin farm population was higher than that of the Haixing farm (Table 3). All the Forest Musk Deer individuals came from four gene clusters. The Forest Musk Deer of the Fumin farm mainly came from gene cluster 1 and 2, and the Forest Musk Deer of the Haixing farm mainly came from gene cluster 3 and 4 (Fig. 2). [Conclusion] The selected microsatellite loci were 13 more than the previous studies, which can provide a reference for future studies on genetic diversity of Forest Musk Deer based on fecal samples. The captive Forest Musk Deer in Fengxian County, Shaanxi Province showed high genetic diversity but a tendency to inbreed. The genetic differentiation of Fumin Forest Musk Deer farm and Haixing Forest Musk Deer farm was small, and there was a large gene flow. It is suggested that the provenance of each captive population can be changed to increase the degree of heterozygosity.

    参考文献
    Ahmad K, Kumar V P, Joshi B D, et al. 2016. Genetic diversity of the Tibetan antelope (Pantholops hodgsonii) population of Ladakh, India, its relationship with other populations and conservation implications. BMC Research Notes, 9(1):477.
    Barbanti A, Martin C, Blumenthal J M, et al. 2019. How many came home? Evaluating ex-situ conservation of green turtles in the Cayman Islands. Molecular Ecology, 28(7):1637–1651.
    Botstein D, White R L, Skolnick M, et al. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3):314–331.
    Cai Y H, Yang J D, Wang J M, et al. 2020. Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions. Animals, 10(2):255.
    De Woody J A, Harder A M, Mathur S, et al. 2021. The long-standing significance of genetic diversity in conservation. Molecular Ecology, 30(17):4147–4154.
    Di Rienzo A, Peterson A C, Garza J C, et al. 1994. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91(8):3166–3170.
    Earl D A, Vonholdt B M. 2012. Structure Harvester:a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics, 4(2):359–361.
    Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nature Reviews Genetics, 17(7):422–433.
    Feng H, Wang L, Cao F J, et al. 2023. Forest Musk Deer (Moschus berezovskii) in China:research and protection. Journal of Vertebrate Biology, 72(1):22067.
    Forest F, Grenyer R, Rouget M, et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445(7129):757–760.
    Frankham R. 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology, 17(1):325–333.
    Frankham R. 2010. Challenges and opportunities of genetic approaches to biological conservation. Biological Conservation, 143(9):1919– 1927.
    Gauffre B, Boissinot A, Quiquempois V, et al. 2022. Agricultural intensification alters marbled newt genetic diversity and gene flow through density and dispersal reduction. Molecular Ecology, 31(1):119–133.
    Gaughran S J, Quinzin M C, Miller J M, et al. 2018. Theory, practice, and conservation in the age of genomics:The Galapagos giant tortoise as a case study. Evolutionary Applications, 11(7):1084– 1093.
    Guichoux E, Lagache L, Wagner S, et al. 2011. Current trends in microsatellite genotyping. Molecular Ecology Resources, 11(4):591–611.
    Hauser S S, Athrey G, Leberg P L. 2021. Waste not, want not:Microsatellites remain an economical and informative technology for conservation genetics. Ecology and Evolution, 11(22):15800–15814.
    Hu Y B, Fan H Z, Chen Y H, et al. 2021. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Science Advances, 7(4):eabd5725.
    Laikre L, Hoban S, Bruford M W, et al. 2020. Post-2020 goals overlook genetic diversity. Science, 367(6482):1083.
    Leigh D M, Hendry A P, Vazquez-Dominguez E, et al. 2019. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evolutionary Applications, 12(8):1505–1512.
    Liu G, Shafer A B A, Zimmermann W, et al. 2014. Evaluating the reintroduction project of Przewalski’s horse in China using genetic and pedigree data. Biological Conservation, 171:288– 298.
    Ma H D, Zhang D, Xiao L Y, et al. 2022. Integrating biodiversity conservation and local community perspectives in China through human dimensions research. People and Nature, 4(6):1461– 1474.
    Pauls S U, Nowak C, Balint M, et al. 2013. The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 22(4):925–946.
    Peakall R, Smouse P E. 2010. GENALEX 6:Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1):288–295.
    Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2):945–59.
    Qi W H, Lu T, Zheng C L, et al. 2020. Distribution patterns of microsatellites and development of its marker in different genomic regions of Forest Musk Deer genome based on high throughput sequencing. Aging-Us, 12(5):4445–4462.
    Robinson J, Kyriazis C C, Yuan S C, et al. 2023. Deleterious variation in natural populations and implications for conservation genetics. Annual Review of Animal Biosciences, 11:93–114.
    Salipante S J, Scroggins S M, Hampel HL, et al. 2014. Microsatellite instability detection by next generation sequencing. Clinical Chemistry, 60(9):1192–1199.
    Shan L, Hu Y B, Zhu L F, et al. 2014. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Molecular Biology and Evolution, 31(10):2663–2671.
    Yang L, Wei F W, Zhan X J, et al. 2022. Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened takins. Molecular Biology and Evolution, 39(6):17.
    Yang S C, Lan T M, Zhang Y, et al. 2023. Genomic investigation of the Chinese alligator reveals wild-extinct genetic diversity and genomic consequences of their continuous decline. Molecular Ecology Resources, 23(1):294–311.
    Yeh F C, R-C Y, Boyle T. 1998. POPGENE Version 1.31. Microsoft windows-based freeware for population genetic analysis. Edmonton, Canada:University of Alberta.
    Yousefi M, Kafash A, Nicolai M P J. 2022. Reptile richness and genetic divergence patterns were shaped by current and past climate in and around the Irano-Anatolian global biodiversity hotspot:Implications for conservation. Diversity and Distributions, 28(12):2637–2647.
    Zhang Y Y, Bai J D, Zhu A N, et al. 2021. Reversing extinction in China’s Pere David’s deer. Science, 371(6530):685–685.
    曹新芳, 郑雪莉, 王洪永, 等. 2022. 陕西圈养林麝遗传多样性评估及核心种质构建. 东北林业大学学报, 50(9):114–119.
    胡大明, 侯真真, 邓承敏, 等. 2021. 基于微卫星和线粒体的四川白水河国家级自然保护区林麝遗传多样性研究. 四川动物, 40(6):641–648.
    竭航, 郑程莉, 王建明, 等. 2015. 林麝分子遗传学研究进展. 中国中药杂志, 40(22):4319–4323.
    盛和林, 刘志霄. 2007. 中国麝科动物. 上海:上海科学技术出版社.
    唐婕, 李晶晶, 王波, 等. 2018. 两种方法从林麝粪便提取DNA效率及分析. 西北农业学报, 27(3):326–330.
    唐婕, 夏健, 张博, 等. 2021. 基于Net Framework的林麝管理系统的构建. 中国草食动物科学, 41(4):56–61, 81.
    魏浩. 2020. 林麝转录组开发微卫星位点及圈养林麝的亲缘关系分析. 西安:西北大学硕士学位论文.
    吴家炎, 王伟. 2006. 中国麝类. 北京:中国林业出版社.
    熊宇, 闫利平, 唐丽萍, 等. 2022. 重引入地生境对普氏野马胃肠道寄生虫疾病感染的风险评估. 动物学杂志, 57(6):866–879.
    张立锋. 2004. 松驰选择对饲养林麝(Moschus berezovskii)遗传多样性的影响. 上海:华东师范大学硕士学位论文.
    郑程莉, 赵润怀, 孟智斌, 等. 2022. 我国人工养麝现状分析及展望. 中国现代中药, 24(9):1684–1692.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王喆,闫利平,鲁冠杰,高云云,何伦,李明哲,胡德夫,张东.2024.基于非损伤取样法的林麝微卫星遗传多样性分析.动物学杂志,59(3):408-417.

复制
文章指标
  • 点击次数:1026
  • 下载次数: 9453
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-17
  • 在线发布日期: 2024-06-17