祁连山国家公园甘肃片区雪豹栖息地廊道研究
作者:
作者单位:

1.中国科学院成都生物研究所 成都 610041;2.中国科学院西北高原生物研究所 西宁 810001;3.中国科学院大学 北京 100049; 4.甘肃祁连山国家级自然保护区管护中心 张掖 734099;5.深圳市一个地球自然基金会 深圳 518000

作者简介:

朱高红,男,林业高级工程师;研究方向:自然保护区管理及国家公园管理;Email:446279303@qq.com。

基金项目:

国家自然科学基金项目(No. 32070520),GEF国家公园体制机制创新项目大熊猫国家公园四川省试点示范项目;


A Study of Snow Leopard Panthera uncia Habitat Corridors in Qilian Mountain National Park (Gansu Area)
Author:
Affiliation:

1.Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041; 2.Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001; 3.University of Chinese Academy of Sciences, Beijing 100049; 4.Management and Protection Center of Qilianshan National Nature Reserve, Zhangye 734099;5.Shenzhen One Planet Foundation, Shenzhen 518000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [9]
  • | | |
  • 文章评论
    摘要:

    雪豹(Panthera uncia)是高山流石滩等山地生境生物多样性的旗舰物种,对维持高山生态系统结构和功能稳定性起着重要作用。近年来雪豹种群数量有所恢复,但多种因素导致的栖息地破碎化仍对雪豹的种群生存造成威胁。建立廊道可将分散的栖息地斑块连接起来,提高雪豹抵抗干扰的能力,并为雪豹的长期生存提供重要保障。本研究以祁连山国家公园甘肃张掖分局保护片区及其15 km缓冲区为研究区域,基于祁连山国家公园甘肃张掖分局保护片区雪豹分布点数据,选取气候、地形和土地利用等环境变量,运用MaxEnt模型对雪豹栖息地适宜度进行分析并划定生态源地,而后基于最小代价路径原理识别雪豹廊道。结果显示,研究区域内雪豹适宜栖息地面积为13 432.066 km2,分布在片区内的适宜栖息地面积为7 086.195 km2,占适宜栖息地总面积的52.756%。崎岖度、最干季度平均温度和季节降雨变异系数是影响雪豹栖息地选择的关键因子。通过分析,最终划定9个生态源地用于后续廊道识别规划。在研究区域内共识别10条潜在生态廊道,廊道最长为18.725 km,最短为0.368 km,平均廊道长度为5.676 km。其中3条廊道连接片区内雪豹适宜栖息地斑块,5条廊道连接该片区与青海片区雪豹栖息地。基于上述结果,我们建议在提升片区内雪豹适宜栖息地之间整体连接度的同时,与青海省共同开展跨界保护工作,以制定更加科学合理的保护与管理计划。

    Abstract:

    [Objectives] The Snow Leopard Panthera uncia is one of the world’s rare and endangered species and is vital in maintaining alpine ecosystems’ structural and functional stability. In recent years, grazing and other disturbances have led to the fragmentation of the Snow Leopard’s habitat and threatening the population’s survival. In order to protect and recover this species, conducting habitat suitability evaluation and building ecological corridors that connect scattered patches of habitat are essential for safeguarding its long-term survival. [Methods] The study area of this research are the Qilian Mountain National Park (Gansu area) and its 15 km buffer zone. A predictive habitat distribution map of Snow Leopards was estimated using the MaxEnt model with a total of 64 occurrence locations (Fig. 1) which were collected by camera monitoring and survey between 2018 and 2020 and environmental factors. The distribution of potential habitat and its relationship with major environmental factors were analyzed with MaxEnt 3.4.1. The accuracy of the result produced by the model with area was evaluated by receiver operating characteristic, ROC (area under the curve, AUC). The importance and contribution of environmental factors to the model’s prediction were evaluated by the Jackknife test. Suitable habitat distribution was indicated by habitat suitability index (HSI). Ecological corridors for Snow Leopards were identified and planned using the least-cost path model (LCP). [Results] The results of the Jackknife test showed that three variables, roughness, mean temperature of driest quarter, and precipitation seasonality were the key factors influencing the distribution of Snow Leopards (Fig. 3), with a value of contribution of 45.936%, 17.078% and 11.519%, respectively (Table 1). The suitable habitat was positively correlated with the roughness, and the occurrence probability of Snow Leopards remained unchanged when the roughness exceeded about 200. The relationship between suitable habitat and mean temperature of driest quarter and precipitation seasonality were humped (Fig. 4). The suitable habitat area of Snow Leopards in the study area was 13 432.066 km2, and the suitable habitat distributed in the park was 7 086.195 km2, accounting for 52.756% of the total suitable habitat area (Fig. 5b). According to habitat suitability analysis and population distribution of Snow Leopard, 9 core habitat patches were identified and 10 potential ecological corridors for Snow Leopard migration were delineated. The longest corridor length was 18.725 km, and the average length was 5.676 km (Fig. 6). Three of these corridors connected suitable Snow Leopard habitat patches within the Gansu area, and five connected the habitat in the Qinghai area. [Conclusion] Based on the results mentioned above, we recommend that efforts should be undertaken to enhance the connectivity between suitable habitats for Snow Leopards. Concurrently, it is advised to collaborate with Qinghai Province to facilitate cross-border conservation initiatives and develop a more scientifically sound and rational plan for protection and management.

    参考文献
    Alexander J S, Gopalaswamy A M, Shi K, et al. 2015. Face value:towards robust estimates of snow leopard densities. PLoS ONE, 10(9):e0134815.
    Amatulli G, Domisch S, Tuanmu M N, et al. 2018. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5:180040.
    Bai D F, Chen P J, Atzeni L, et al. 2018. Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zoological Research, 39(6):373–386.
    Banks-Leite C, Ewers R M, Folkard-Tapp H, et al. 2020. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth, 3(6):672–676.
    Block W M, Brennan L A. 1993. The habitat concept in ornithology. Current Ornithology, 11:35–91.
    Brookes C J. 1997. A parameterized region-growing programme for site allocation on raster suitability maps. International Journal of Geographical Information Science, 11(4):375–396.
    ?ervinka J, ?álek M, Pady?áková E, et al. 2013. The effects of local and landscape-scale habitat characteristics and prey availability on corridor use by carnivores:a comparison of two contrasting farmlands. Journal for Nature Conservation, 21(2):105–113.
    Gilbert-Norton L, Wilson R, Stevens J R, et al. 2010. A meta-analytic review of corridor effectiveness. Conservation Biology, 24(3):660–668.
    Heller N E, Zavaleta E S. 2009. Biodiversity management in the face of climate change:a review of 22 years of recommendations. Biological Conservation, 142(1):14–32.
    Johansson ?, Koehler G, Rauset G R, et al. 2018. Sex-specific seasonal variation in puma and snow leopard home range utilization. Ecosphere, 9(8):e02371.
    LaPoint S, Gallery P, Wikelski M, et al. 2013. Animal behavior, cost-based corridor models, and real corridors. Landscape Ecology, 28(8):1615–1630.
    Lham D, Cozzi G, Sommer S, et al. 2021. Modeling distribution and habitat suitability for the snow leopard in Bhutan. Frontiers in Conservation Science, 2:781085.
    Li J, Lu Z. 2014. Snow leopard poaching and trade in China 2000–2013. Biological Conservation, 176:207–211.
    Li J, McCarthy T M, Wang H, et al. 2016. Climate refugia of snow leopards in High Asia. Biological Conservation, 203:188–196.
    Li J, Schaller G B, McCarthy T M, et al. 2013. A communal sign post of snow leopards (Panthera uncia) and other species on the Tibetan Plateau, China. International Journal of Biodiversity, 2013:370905.
    Li J, Weckworth B V, McCarthy T M, et al. 2020. Defining priorities for global snow leopard conservation landscapes. Biological Conservation, 241:108387.
    Li Y, Zhang Y, Xue Y D, et al. 2022. Analysis of conservation gaps and landscape connectivity for snow leopard in Qilian Mountains of China. Sustainability, 14(3):1638.
    Liu C, White M, Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4):778–789.
    Liu J, Wilson M, Hu G, et al. 2018. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship?. Landscape Ecology, 33:341–352.
    Lyngdoh S, Shrotriya S, Goyal S P, et al. 2014. Prey preferences of the snow leopard (Panthera uncia):regional diet specificity holds global significance for conservation. PLoS ONE, 9(2):e88349.
    Mann C C, Plummer M L. 1995. Are wildlife corridors the right path? Science, 270(5241):1428–1430.
    McCarthy T M, Fuller T K, Munkhtsog B. 2005. Movements and activities of snow leopards in Southwestern Mongolia. Biological Conservation, 124(4):527–537.
    McCarthy T, Mallon D, Jackson R, et al. 2017. Panthera uncia. The IUCN Red List of Threatened Species 2017. [EB/OL]. [2022- 01-19]. https://www.iucnredlist.org/species/22732/50664030.
    Mech S G, Hallett J G. 2001. Evaluating the effectiveness of corridors:a genetic approach. Conservation Biology, 15(2):467–474.
    Pal R, Sutherland C, Qureshi Q, et al. 2022. Landscape connectivity and population density of snow leopards across a multi-use landscape in Western Himalaya. Animal Conservation, 25(3):414–426.
    Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3/4):231–259.
    Shcheglovitova M, Anderson R P. 2013. Estimating optimal complexity for ecological niche models:a jackknife approach for species with small sample sizes. Ecological Modelling, 269:9–17.
    Spellerberg I F, Gaywood M J. 1993. Linear features:linear habitats & wildlife corridors. Center for Environmental Sciences.
    Tian M R, Chen X L, Gao J X, et al. 2022. Identifying ecological corridors for the Chinese ecological conservation redline. PLoS ONE, 17(7):e0271076.
    Urbani F, D’Alessandro P, Frasca R, et al. 2015. Maximum entropy modeling of geographic distributions of the flea beetle species endemic in Italy (Coleoptera:Chrysomelidae:Galerucinae:Alticini). Zoologischer Anzeiger, 258:99–109.
    Zeller K A, McGarigal K, Whiteley A R. 2012. Estimating landscape resistance to movement:a review. Landscape Ecology, 27(6):777–797.
    Zhao G H, Cui X Y, Sun J J, et al. 2021. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecological Indicators, 132:108256.
    程宏毅, 鲍毅新, 葛宝明, 等. 2006. 栖息地片断化对动物种群间基因流的影响及其测定方法. 生态学杂志, 25(7):863–868.
    程一凡, 薛亚东, 代云川, 等. 2019. 祁连山国家公园青海片区人兽冲突现状与牧民态度认知研究. 生态学报, 39(4):1385– 1393.
    邸华, 刘建泉, 贺晓香. 2014. 祁连山保护区近56年降水量变化稳定性探析. 甘肃科技, 30(18):58–59.
    国家林业和草原局. 2020. 全国重要生态系统保护和修复重大工程总体规划(2021–2035年). [EB/OL]. (2020-05-16) [2021-03-20]. http://www.forestry.gov.cn/html/main/main_72/20200611183423666285011/file/20200611183608986247918.pdf.
    胡大志, 徐恺, 张俊涛, 等. 2022. 甘肃祁连山国家级自然保护区野生动物红外相机监测分析. 野生动物学报, 43(3):692–703.
    李芳菲. 2021. 基于雪豹生境保护的青海祁连山土地利用景观格局优化研究. 昆明:云南财经大学硕士毕业论文.
    李芳菲, 李丽, 吴巩胜, 等. 2023. 基于最大熵模型的青海祁连山雪豹生境适宜性评价. 生态学报, 43(6):2202–2209.
    李娟. 2012. 青藏高原三江源地区雪豹(Panthera uncia)的生态学研究及保护. 北京:北京大学博士毕业论文.
    李敏. 2020. 以旗舰物种为代理的多物种廊道规划-以拖乌山大熊猫廊道为例. 南充:西华师范大学硕士毕业论文.
    廖空太. 2019. 大熊猫祁连山国家公园甘肃管理局张掖分局雪豹等濒危珍稀野生动物生物多样性监测评估报告. 甘肃:甘肃祁连山国家级自然保护区林业调查规划队.
    刘沿江, 李雪阳, 梁旭昶, 等. 2019. “在哪里”和“有多少”? 中国雪豹调查与空缺. 生物多样性, 27(9):919–931.
    蒙倩彬. 2016. 基于生物多样性保护的城市生态廊道研究. 北京:北京林业大学硕士毕业论文.
    邱兰. 2022. 大熊猫国家公园及其周边的人兽冲突现状及保护管理探究. 南充:西华师范大学硕士毕业论文.
    覃琳, 宋孝玉, 冯湘华. 2019. 基于划区轮牧理论的祁连山北麓牧区动态草畜平衡研究. 农业工程学报, 35(11):256–264.
    王彦, 马鸣, 买尔旦.吐尔干. 2012. 近60年来雪豹(Uncia uncia)研究的文献分析. 生物学杂志, 29(3):78–82.
    曾真, 艾婧文, 王梓凌, 等. 2024. 三明市区景观格局时空演变及生态网络构建研究. 生态与农村环境学报, 40(3):335–344.
    张常智, 马腾, 乌力吉, 等. 2023. 甘肃祁连山脉雪豹及其同域分布大型食肉动物时间生态位关系. 兽类学报, 43(1):109–115.
    张启舜, 李飞雪, 王帝文, 等. 2021. 基于生态网络的江苏省生态空间连通性变化研究. 生态学报, 41(8):3007–3020.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱高红,胡大志,马堆芳,张俊涛,王东武,张广文,阿诚,王亮,马晨迪,戴强,王义弘.2024.祁连山国家公园甘肃片区雪豹栖息地廊道研究.动物学杂志,59(4):493-504.

复制
文章指标
  • 点击次数:1222
  • 下载次数: 14758
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-27
  • 在线发布日期: 2024-08-23