北京市雾灵山自然保护区豹猫、亚洲狗獾和猪獾的活动节律分析
作者:
作者单位:

1.北京市密云区雾灵山林场管理处 北京 101506;2.北京市密云区园林绿化局 北京 101506;3.北京林业大学生态与自然保护学院 北京 100083;4.北京林业大学生物科学与技术学院 北京 100083

中图分类号:

Q958

基金项目:

北京市密云区园林绿化局科研项目(No. YL2017019);


Activity Pattern Among Sympatric Leopard Cat, Asian Badger and Hog Badger in Wulingshan Nature Reserve, Beijing
Author:
Affiliation:

1.Beijing Miyun District Wulingshan Forest Unit, Beijing 101506; 2.Beijing Miyun District Bureau of Gardening and Greening, Beijing 101506; 3.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083; 4.College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    活动节律是行为生态学研究的一项重要内容,了解动物的活动节律是分析物种之间生态位分化、认识种间共存机制的重要内容。本研究借助红外相机技术,于2017年全年对分布于北京市密云区雾灵山自然保护区的豹猫(Prionailurus bengalensis)、亚洲狗獾(Meles leucurus)和猪獾(Arctonyx collaris)的活动节律进行比较研究。在35个位点布设红外相机,累计有效工作8 400个相机日,获得豹猫独立有效照片393张、亚洲狗獾682张、猪獾797张。采用非参数核密度估计方法分析3种动物的活动节律,结果显示,研究区域内3种动物的月活动节律随季节变化,初夏和初秋存在活动高峰。3种动物的日活动节律存在一定重叠,但具有各自不同的活动峰值:豹猫和猪獾在夜间活动强度较大,但猪獾的活动峰值较豹猫有所推迟,亚洲狗獾则在昼夜交替时期活动最频繁。3种动物通过活动节律峰值的差异产生了生态位分离,从而有利于同域分布下的共存。本研究从活动时间维度的峰值差异认识3种动物的活动节律生态位分化,有助于深入理解同域物种共存机制,为进一步开展3种动物行为生态适应研究、制定栖息地保护对策提供科学依据。

    Abstract:

    [Objectives] Activity pattern is an important part of behavioral ecology research. Understanding the activity pattern of wild animals is a prerequisite for analyzing their survival strategies. Beijing Wulingshan Nature Reserve is an important carnivore distribution hotspot with much scientific research value. It will contribute to effective biodiversity management by revealing the co-existence adaptation among the carnivores. [Methods] In this study, camera trapping technology was used to study the activity patterns of sympatric Leopard Cat Prionailurus bengalensis, Asian Badger Meles leucurus and Hog Badger Arctonyx collaris distributed in Beijing Wulingshan Nature Reserves. A total of 35 infrared cameras were deployed with 8 400 camera-days during the study period of the whole 2017. Among the independent camera photos, there were 393 for Leopard Cat, 682 for Asian Badger, and 797 for Hog Badger. Using the “activity” and “overlap” packages in R, the non-parametric kernel density approach was used to examine the activity patterns based on the collected data. Using the “CompareCkern” in R Studio and a 500-run round robin test, the overlap coefficients were determined. [Results] The results indicated that the annual activity pattern of the three animals changed with seasons in similar patterns and the highest activity peak happened in early autumn (Fig. 2). The overlap factor of the activity patterns between Leopard Cat and Asian Badger were high in spring and autumn (Δ = 0.747 5 in spring and Δ = 0.772 8 in autumn), while the activity peaks were different (Fig. 3). In spring, the activity peaks of the Leopard Cat appeared in 3:00﹣5:00 and 21:00﹣23:00, while the Asian Badger were more active in 23:00﹣1:00 and 16:00﹣18:00 that were earlier than the Leopard Cat. In autumn, the Leopard Cat had two peaks in 3:00﹣5:00 and 20:00﹣22:00, whereas the Asian Badger only had one peak in 21:00﹣23:00 (Fig. 3). The Leopard Cat and the Hog Badger had similar activity trends in spring and summer, on the contrary, the activity patterns were different in autumn and winter (Fig. 4). The activity patterns of Asian Badger and Hog Badger showed much different in spring, summer and autumn. The activity peak of Asian Badger appeared in 16:00﹣18:00 in spring, 15:00﹣17:00 in summer, and 21:00﹣23:00 in autumn while the Hog Badger was in relatively low activity during the same time periods (Fig. 5). [Conclusion] Through the differentiation in activity peaks, these three carnivore species produced a fine scale temporal separation and realized the co-existence of sympatric distribution. This study strengthens the understanding of the coexistence strategies of the three species which provides baseline information for conducting further studies on carnivore behavioral adaptation and planning habitat conservation measures.

    参考文献
    Andersen G E, Johnson C N, Jones M E. 2020. Space use and temporal partitioning of sympatric Tasmanian Devils and spotted-tailed quolls. Austral Ecology, 45(3):355–365.
    Broekhuis F, Cozzi G, Valeix M, et al. 2013. Risk avoidance in sympatric large carnivores:reactive or predictive? The Journal of Animal Ecology, 82(5):1098–1105.
    Cresswell W J, Harris S. 1988. The effects of weather conditions on the movements and activity of badgers (Meles meles) in a suburban environment. Journal of Zoology, 216(1):187–194.
    Godvik I M R, Loe L E, Vik J O, et al. 2009. Temporal scales, trade-offs, and functional responses in red Deer habitat selection. Ecology, 90(3):699–710.
    Karanth K U, Srivathsa A, Vasudev D, et al. 2017. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the Royal Society B:Biological Sciences, 284(1848):20161860.
    Marinho P H, Bezerra D, Antongiovanni M, et al. 2018. Activity patterns of the threatened northern tiger cat Leopardus tigrinus and its potential prey in a Brazilian dry tropical forest. Mammalian Biology, 89(1):30–36.
    Meredith M, Ridout M. 2014. Overlap:estimates of coefficient of overlapping for animal activity patterns. [CP/OL]. [2024-01-29]. http://CRAN.R-project.org /package=overlap.
    O’Brien T G, Kinnaird M F, Wibisono H T. 2003. Crouching tigers, hidden prey:Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6(2):131–139.
    Piccione G, Marafioti S, Giannetto C, et al. 2013. Daily rhythm of total activity pattern in domestic cats (Felis silvestris catus) maintained in two different housing conditions. Journal of Veterinary Behavior, 8(4):189–194.
    Ridout M S, Linkie M. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3):322–337.
    Ross J, Hearn A J, Johnson P J, et al. 2013. Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. Journal of Zoology, 290(2):96–106.
    Rowcliffe M. 2016. Activity:animal activity statistics. [CP/OL]. [2024-01-29]. http://CRAN.R-project.org/package= activity.
    Tanaka H. 2005. Seasonal and daily activity patterns of Japanese badgers (Meles meles anakuma) in Western Honshu, Japan. Mammal Study, 30(1):11–17.
    Teng Y, Yang J, Ju L F, et al. 2022. Current genetic structure analysis of leopard cats reveals a weak disparity trend in subpopulations in Beijing, China. Biology, 11(10):1478.
    Zahoor B, Liu X H, Wu P F, et al. 2021. Activity pattern study of Asiatic black bear (Ursus thibetanus) in the Qinling Mountains, China, by using infrared camera traps. Environmental Science and Pollution Research International, 28(20):25179–25186.
    陈立军, 束祖飞, 肖治术. 2019. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例. 生物多样性, 27(3):266–272.
    崔勇勇. 2013. 引入狗獾(Meles meles)活动规律及行为的研究. 上海:华东师范大学硕士学位论文.
    范雅倩, 杨婧, 张洪亮, 等. 2020. 北京松山自然保护区中型捕食动物的食物构成分析. 生物学杂志, 37(1):59–62.
    胡强, 林红强, 戴强, 等. 2020. 卧龙保护区三种中型食肉动物的生态位差异. 动物学杂志, 55(6):685–691.
    蒋志刚, 马勇, 吴毅, 等. 2015. 中国哺乳动物多样性及地理分布. 北京:科学出版社, 169, 181.
    兰慧, 金崑. 2016. 红外相机技术在北京雾灵山自然保护区兽类资源调查中的应用. 兽类学报, 36(3):322–329.
    李治霖, 多立安, 李晟, 等. 2021. 陆生食肉动物竞争与共存研究概述. 生物多样性, 29(1):81–97.
    刘小斌, 赵凯辉, 王勐. 2022. 利用红外相机监测数据分析佛坪国家级自然保护区豹猫和黄喉貂活动节律及空间分布. 动物学杂志, 57(1):9–18.
    尚玉昌. 2006. 动物的行为节律. 生物学通报, 41(10):8–10.
    王渊, 李晟, 刘务林, 等. 2019. 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律. 生物多样性, 27(6):638–647.
    武鹏峰, 刘雪华, 蔡琼, 等. 2012. 红外相机技术在陕西观音山自然保护区兽类监测研究中的应用. 兽类学报, 32(1):67–71.
    邢韶华, 鲍伟东, 王清春, 等. 2013. 北京市雾灵山自然保护区综合科学考察报告. 北京:中国林业出版社, 55–58.
    杨剑焕, 李敬华, 杨浩炫, 等. 2022. 基于红外相机数据评估华南地区豹猫的种群密度和活动节律. 生物多样性, 30(9):89–99.
    张源笙, 蒋健, 蒋万杰, 等. 2017. 北京松山国家级自然保护区兽类活动节律初步研究. 四川动物, 36(4):460–467.
    赵联军, 刘鸣章, 罗春平, 等. 2020. 四川王朗国家级自然保护区血雉的日活动节律. 四川动物, 39(2):121–128.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

房新民,李建,张德怀,马壮,马志红,尹岳琦,滕扬,鲍伟东.2024.北京市雾灵山自然保护区豹猫、亚洲狗獾和猪獾的活动节律分析.动物学杂志,59(4):505-513.

复制
文章指标
  • 点击次数:1209
  • 下载次数: 14860
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-28
  • 在线发布日期: 2024-08-23