高原鼢鼠和高原鼠兔肺组织磷脂酰胆碱合成关键酶基因的进化及其表达差异分析
作者:
作者单位:

1.青海大学高原医学研究中心 西宁 810016;2.省部共建三江源生态与高原农牧业国家重点实验室 西宁 810016

作者简介:

王志洁,女,博士研究生;研究方向:低氧生理;E-mail:411126871@qq.com。

基金项目:

国家自然科学基金项目(No. 31860606),青海省自然科学基金项目(No. 2021-ZJ-904);


NPEvolution Analysis and Expression Difference of Key Enzyme Genes for Phosphatidylcholine Synthesis in Lung Tissues Among Plateau Zokors and Plateau Pikas
Author:
Affiliation:

1.Research Center for High Altitude Medicine, Qinghai University, Xining 810016;2.State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肺表面活性物质有助于维持肺泡结构,促进呼吸作用和对氧的吸收及利用,磷脂酰胆碱为肺表面活性物质磷脂主要成分。为进一步研究高原动物对低氧环境的适应机制,本文以青藏高原特有物种高原鼢鼠(Eospalax baileyi)和高原鼠兔(Ochotona curzoniae)为研究对象,应用生物信息学方法对编码磷脂酰胆碱合成途径中关键酶胆碱激酶基因Chok-αChok-β、磷酸胆碱胞苷转移酶基因Pcyt-αPcyt-β以及胆碱磷酸转移酶基因Cpt的序列进行进化分析,并以SD大鼠(Rattus norvegicus)为对照,测定了这些基因在肺组织中的mRNA表达水平。生物信息学结果表明, Chok-α、Chok-β、Pcyt-α、Pcyt-βCpt基因序列高原鼢鼠与以色列鼹鼠(Nannospalax galili)的同源性最高,高原鼠兔与北美鼠兔(O. princeps)的同源性最高,均高达90%以上;高原鼢鼠Cpt与以色列鼹鼠,高原鼠兔Chok-β、Pcyt-β和Cpt与北美鼠兔有平行进化位点。选择压力分析表明,高原鼢鼠Chok-α亚基第4位的赖氨酸、第5位点的苯丙氨酸和第10位的谷氨酸,高原鼠兔Chok-β亚基第4位蛋氨酸,高原鼢鼠Cpt第163位谷氨酸,这些位点均存在显著差异(P < 0.05);SIFT评估结果发现,高原鼠兔的Chok-β亚基中第212位氨基酸变异位点和Pcyt-β亚基第18位氨基酸变异位点对其功能有显著影响(P < 0.05)。mRNA表达水平分析结果表明,高原鼢鼠Chok-αChok-β mRNA表达水平均显著高于高原鼠兔与SD大鼠(P < 0.01),高原鼠兔Chok-β mRNA表达水平显著高于SD大鼠(P < 0.05);SD大鼠Pcyt-αPcyt-β Cpt mRNA表达水平显著高于高原鼠兔和高原鼢鼠(P < 0.01),而高原鼠兔与高原鼢鼠间无差异(P > 0.05)。以上结果表明,与SD大鼠相比,高原鼢鼠和高原鼠兔磷脂酰胆碱合成途径中关键酶氨基酸变异和基因表达水平的差异以及两种高原动物的生理适应,更利于它们在高寒低氧的独特环境中获取氧并利用氧,从而促进呼吸作用,以加强能量代谢并适应低氧环境。

    Abstract:

    [Objectives] Pulmonary surfactant (PS) can help to maintain the structure of alveoli, improve respiration and oxygen absorption and utilization. Notably, phosphatidylcholine (PC) serves as the principal constituent of pulmonary surfactant phospholipids. In order to shed lights into the adaptation mechanism of plateau animals to hypoxic environments, this study focuses on the endemic species of Plateau Zokor Eospalax baileyi and Plateau Pika Ochotona curzoniae in the Qinghai Tibet Plateau. [Methods] The sequences of Chok-α, Chok-β, Pcyt-α, Pcyt-β and Cpt genes were analyzed by MEGA 7.0, PAML 4.8 program and Ancestor program. Additionally, the mRNA expression levels of these genes were determined with Real-time PCR in the lung tissues and compared with those in the SD Rat Rattus norvegicus. [Results] The bioinformatics analysis revealed that the sequences of Chok-α, Chok-β, Pcyt-α, Pcyt-β and Cpt in E. baileyi were highly homologous with those of Nannospalax galili, as well as the O. curzoniae has the highest level of homology with O. princeps (> 90%) (Table 2). Cpt of E. baileyi and N. galili, Chok-β, Pcyt-β and Cpt of O. curzoniae and O. princeps occurred convergent sites. Selection pressure analyses showed that lysine at sites 4, phenylalanine at sites 5 and glutamic acid at sites 10 of Chok-α subunit in Plateau Zokor were significantly different (P < 0.05, Table 3); methionine at sites 4 of Chok-β subunit in Plateau Pika, glutamic acid at sites 163 of Cpt subunit in Plateau Zokor were also significantly different (P < 0.05, Table 3). SIFT test showed that No. 212 variation sites of Chok-β subunit and No.18 variation sites of Pcyt-β subunit in Plateau Pika had significant effects on gene function (P < 0.05, Table 4). The mRNA expression levels of Chok-α, Chok-β, Pcyt-α and Pcyt-β in Plateau Zokor were significantly higher than those in Plateau Pika and SD Rat (P < 0.01), and the mRNA expression level of Chok-β in Plateau Pika was higher than SD Rat (P < 0.05) (Fig. 6). The expression level of Cpt in SD Rat was significantly higher than that in Plateau Pika and Plateau Zokor (P < 0.01), while there was no difference between expression levels in Plateau Pika and Plateau Zokor (P > 0.05) (Fig. 6). [Conclusion] The above results demonstrate that, in comparison to SD Rat, the amino acid structure and gene expression variations of key enzyme genes in phosphatidylcholine pathway of Plateau Zokor and Plateau Pika, along with two plateau animal physiological adaptation make them more conducive to acquire and employ oxygen in the unique environment of high cold and hypoxic environment. Consequently, this reinforces respiration, enhances energy metabolism, and facilitates adaption to low oxygen environments.

    参考文献
    An Z F, Wei L N, Xu B, et al. 2022. A homotetrameric hemoglobin expressed in alveolar epithelial cells increases blood oxygenation in high-altitude Plateau Pika (Ochotona curzoniae). Cell Reports, 41(1):111446.
    Aoyama C, Liao H N, Ishidate K. 2004. Structure and function of choline kinase isoforms in mammalian cells. Progress in Lipid Research, 43(3):266–281.
    Aoyama C, Yamazaki N, Terada H, et al. 2000. Structure and characterization of the genes for murine choline/ethanolamine kinase isozymes alpha and beta. Journal of Lipid Research, 41(3):452–464.
    Band M, Ashur-Fabian O, Avivi A. 2010. The expression of p53-target genes in the hypoxia-tolerant subterranean mole-rat is hypoxia-dependent and similar to expression patterns in solid tumors. Cell Cycle, 9(16):3347–3352.
    Bansal A, Harris R A, DeGrado T R. 2012. Choline phosphorylation and regulation of transcription of choline kinase α in hypoxia. Journal of Lipid Research, 53(1):149–157.
    Baze M M, Schlauch K, Hayes J P. 2010. Gene expression of the liver in response to chronic hypoxia. Physiological Genomics, 41(3):275–288.
    Bernardino de la Serna J, Vargas R, Picardi V, et al. 2012. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discussions, 161:535–548.
    Chander A, Viswanathan R, Venkitasubramanian T A. 1975. Effect of acute hypobaric hypoxia on 32-P incorporation into phospholipids of alveolar surfactant, lung, liver and plasma of rat. Environmental Physiology & Biochemistry, 5(1):27–36.
    Chida N, Hirono H, Nishimura Y, et al. 1973. Choline phosphokinase, phosphorylcholine cytidyltransferase and CDP-choline:1,2- diglyceride cholinephosphotransferase activity in developing rat lung. The Tohoku Journal of Experimental Medicine, 110(3):273–282.
    Glasser J R, Mallampalli R K. 2012. Surfactant and its role in the pathobiology of pulmonary infection. Microbes and Infection, 14(1):17–25.
    Gurnett A M, O’Connell J P, Harris D E, et al. 1984. The myoglobin of rodents:Lagostomus maximus (viscacha) and Spalax ehrenbergi (mole rat). Journal of Protein Chemistry, 3(5):445–454.
    Haagsman H P, Hogenkamp A, van Eijk M, et al. 2008. Surfactant collectins and innate immunity. Neonatology, 93(4):288–294.
    Hawgood S, Benson B J, Jr Hamilton R L. 1985. Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry, 24(1):184–190.
    Heath D, Edwards C, Winson M, et al. 1973. Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude. Thorax, 28(1):24–28.
    Hogan M, Zimmermann L J, Wang J, et al. 1994. Increased expression of CTP:phosphocholine cytidylyltransferase in maturing type II cells. The American Journal of Physiology, 267(1):L25–L32.
    Hopkins N, McLoughlin P. 2002. The structural basis of pulmonary hypertension in chronic lung disease:remodelling, rarefaction or angiogenesis? Journal of Anatomy, 201(4):335–348.
    Ishidate K. 1997. Choline/ethanolamine kinase from mammalian tissues. Biochimica et Biophysica Acta, 1348(1/2):70–78.
    Kent C. 1997. CTP:phosphocholine cytidylyltransferase. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1348(1/2):79–90.
    Kettel L J. 1969. The surfactant system of the lung. JAMA, 207(12):2287.
    Kumar P, Henikoff S, Ng P C. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4:1073–1081.
    Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7):1870–1874.
    Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947–2948.
    Li J M, An Z F, Wei L N, et al. 2022. A new homotetramer hemoglobin in the pulmonary surfactant of Plateau Zokors (Myospalax baileyi). Frontiers in Genetics, 13:824049.
    Liu H, Setiono R. 1995. Chi2:feature selection and discretization of numeric attributes. Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 388–391.
    Lykidis A, Jackowski S. 2001. Regulation of mammalian cell membrane biosynthesis. Progress in Nucleic Acid Research and Molecular Biology, 65:361–393.
    McMaster C R, Bell R M. 1997. CDP-ethanolamine:1, 2-diacylglycerol ethanolaminephosphotransferase. Biochimica et Biophysica Acta, 1348(1/2):117–123.
    Nei M, Kumar S, 2000. Molecular Evolution and Phylogenetics. Oxford:Oxford University Press, 385–386.
    Nevo E. 2011. Evolution under environmental stress at macro- and microscales. Genome Biology and Evolution, 3:1039–1052.
    Norris R W, Zhou K, Zhou C, et al. 2004. The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia). Molecular Phylogenetics & Evolution, 31(3):972–978.
    Peacock M M, Smith A T. 1997. The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia, 112(4):524–533.
    Schoel W M, Schürch S, Goerke J. 1994. The captive bubble method for the evaluation of pulmonary surfactant:surface tension, area, and volume calculations. Biochimica et Biophysica Acta, 1200(3):281–290.
    Shams I, Avivi A, Nevo E. 2005. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 142(3):376–382.
    Shao Y, Li J X, Ge R L, et al. 2015. Genetic adaptations of the Plateau Zokor in high-elevation burrows. Scientific Reports, 5:17262.
    Smith A T, Nagy J D. 2015. Population resilience in an American pika (Ochotona princeps) metapopulation. Journal of Mammalogy, 96(2):394–404.
    Spragg R G, Li J L. 2000. Effect of phosphocholine cytidylyltransferase overexpression on phosphatidylcholine synthesis in alveolar type II cells and related cell lines. American Journal of Respiratory Cell and Molecular Biology, 22(1):116–124.
    St?ver B C, Müller K F. 2010. TreeGraph 2:combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics, 11:7.
    Vance D E, Vance J, E. 1991. Biochemistry of lipids, lipoproteins and membranes. Elsevier Science.
    Weinhold P A, Feldman D A. 1995. Fatty acids promote the formation of complexes between choline-phosphate cytidylyltransferase and cytidylyltransferase binding protein. Archives of Biochemistry and Biophysics, 318(1):147–156.
    White B T, Bolker E D. 2008. Interactive computer simulations of genetics, biochemistry, and molecular biology. Biochemistry and Molecular Biology Education, 36(1):77–84.
    Yang Z H. 2007. PAML 4:phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8):1586–1591.
    Yatsu F M, Moss S A. 1971. Brain lipid changes following hypoxia. Stroke, 2(6):587–593.
    Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level. Molecular Biology and Evolution, 14(5):527–536.
    Zhang T, Lei M L, Zhou H, et al. 2022. Phylogenetic relationships of the zokor genus Eospalax (Mammalia, Rodentia, Spalacidae) inferred from whole-genome analyses, with description of a new species endemic to Hengduan Mountains. Zoological Research, 43(3):331–342.
    Zhou C Q, Zhou K Y. 2008. The validity of different zokor species and the genus Eospalax inferred from mitochondrial gene sequences. Integrative Zoology, 3(4):290–298.
    Zuo Y Y, Veldhuizen R A W, Neumann A W, et al. 2008. Current perspectives in pulmonary surfactant:inhibition, enhancement and evaluation. Biochimica et Biophysica Acta, 1778(10):1947–1977.
    曹栋, 裘爱泳, 王兴国. 2002. 磷脂及磷脂酰胆碱生物学功能. 粮食与油脂, 15(11):23–24.
    陈华伟. 2004. 高原鼢鼠、鼠兔肺表面活性物质的研究. 高原医学杂志, 14(3):10–12.
    代贝贝. 2021. CHKB的新发突变通过影响磷脂稳态导致扩张型心肌病. 武汉:华中科技大学博士学位论文.
    冯祚建, 郑昌琳. 1985. 中国鼠兔属(Ochotona)的研究:分类与分布. 兽类学报, 5(4):269–289.
    胡琳, 陈华伟, 许子俊. 1997. 高原鼠兔肺表面活性物质的研究. 高原医学杂志, 7(1):27–29.
    胡小中. 2011. 磷脂酰胆碱的生理功能和作用机理. 粮油食品科技, 19(4):42–44.
    蒋志刚. 2015. 中国哺乳动物多样性及地理分布. 北京:科学出版社.
    李涛, 肖玉, 王宏伟, 等. 2007. 血管内皮生长因子对肺表面活性物质磷脂合成的影响. 中国新生儿科杂志, 22(5):285–288.
    李永晓, 徐波, 安志芳, 等. 2021. 高原鼢鼠、高原鼠兔和大鼠肺表面活性物质组成和含量的比较. 生理学报, 73(1):51–61.
    刘中洋, 杨阳, 袭荣刚, 等. 2015. 肺表面活性物质及其在肺感染作用中的研究进展. 现代生物医学进展, 15(2):376–379.
    路法超, 谢小燕, 尹晓敏, 等. 2018. 磷酸胆碱胞苷酰转移酶α在口腔鳞状细胞癌中的表达及潜在临床意义. 中华口腔医学杂志, 53(4):254–258.
    秦环龙, 吴静怡. 1996. 急性肺损伤家兔肺表面活性物质磷脂含量、活性与肺功能关系的研究. 镇江医学院学报, 6(3):232–233.
    沈南英, 王朝华, 刘国生, 等. 1982. 一六〇五的毒力测定及其防治草原害鼠的药效试验. 中国草原, 4(3):52–56.
    施银柱, 樊乃昌. 1980. 草原害鼠及其防治. 西宁:青海人民出版社.
    王晓君, 魏登邦, 魏莲, 等. 2008. 高原鼢鼠和高原鼠兔肺细叶的结构特征. 动物学报, 54(3):531–539.
    王祖望, 曾缙祥, 韩永才. 1979. 高原鼠兔和中华鼢鼠气体代谢的研究. 动物学报, 25(1):75–85.
    魏登邦, 张建梅, 魏莲, 等. 2006. 高原鼢鼠对低氧高二氧化碳环境适应的相关血液生理指标的季节变化. 动物学报, 52(5):871–877.
    薛立军. 2007. 人源性肺表面活性物质制备和研究. 广州:第一军医大学博士学位论文.
    杨晓静, 毛宝龄, 钱桂生, 等. 1997. 肺动脉高压大鼠模型的复制. 上海实验动物科学, 17(4):199–202.
    查锡良, 蔡镇潮. 1994. 胆碱摄取及磷酯酰胆碱合成的调节研究. 生物化学与生物物理学报, 26(5):459–467.
    朱光发, 钮善福, 蔡映云, 等. 2000. 肺表面活性物质在急性油酸性肺损伤时的变化. 中国危重病急救医学, (9):525–528.
    朱世海, 齐新章, 王晓君, 等. 2009. 高原鼢鼠和高原鼠兔骨骼肌摄氧功能差异. 生理学报, 61(4):373–378.
    朱正美. 1985a. 磷脂酰胆碱的生物合成及其调节(一). 国外医学:分子生物学分册, 7(5):224–228, 232.
    朱正美. 1985b. 磷脂酰胆碱的生物合成及其调节:(二). 国外医学:分子生物学分册, 7(6):274–279.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王志洁,李永晓,安志芳,陈晓琦,张佳钰,魏登邦.2024.高原鼢鼠和高原鼠兔肺组织磷脂酰胆碱合成关键酶基因的进化及其表达差异分析.动物学杂志,59(4):545-561.

复制
文章指标
  • 点击次数:848
  • 下载次数: 14345
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-21
  • 在线发布日期: 2024-08-23