甘肃盐池湾出生黑颈鹤活动区及栖息地忠诚度的年龄差异
作者:
作者单位:

1.甘肃盐池湾国家级自然保护区管护中心 酒泉 736300;2.北京林业大学生态与自然保护学院 北京 100083

基金项目:

国家自然科学基金项目(No. 31770573);


Age Differences in Home Range and Site Fidelity of Black-Necked Cranes Grus nigricollia Born in Yanchiwan, Gansu
Author:
Affiliation:

1.Gansu Yanchiwan National Reserve Management and Conservation Center, Jiuquan 736300; 2.School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    祁连山北麓盐池湾地区是黑颈鹤(Grus nigricollia)重要的繁殖地和度夏地。为了解该地区出生黑颈鹤的活动区及栖息地忠诚度的年龄差异,我们于2018至2020年对在该区域出生的黑颈鹤幼鸟进行环志及卫星跟踪。使用核密度分析法计算不同年龄阶段黑颈鹤在度夏期和越冬期的活动区及核心活动区,并计算不同年龄阶段黑颈鹤活动区的重叠度。通过Student’s t检验和Mann-Whitney U检验进行差异性分析,并用QGIS进行制图。结果表明,共有18只个体跟踪时长超过2个度夏期,在度夏期和越冬期,黑颈鹤幼鸟的活动区及核心活动区面积均显著小于亚成体(P < 0.05)。其中1龄亚成体的活动区及核心活动区面积最大,但1龄亚成体与2龄亚成体之间没有明显差异。不同年龄阶段黑颈鹤间的活动区重叠度没有显著差异(P < 0.05)。但度夏期,33.33%的个体在1龄亚成体阶段不再返回出生地附近活动(n = 6),这表明黑颈鹤1龄亚成体的栖息地忠诚度存在一定的个体差异。其中1只1龄亚成体被记录到在蒙古国度夏,这是蒙古国首次记录到黑颈鹤,并证实其来自盐池湾繁殖种群。在越冬期,不同年龄阶段黑颈鹤均表现出较高的栖息地忠诚度。本研究有助于解释盐池湾出生黑颈鹤亚成体去向,并证明了盐池湾黑颈鹤繁殖种群对于黑颈鹤种群发展的重要作用,为证明亚成体在种群扩散上的先锋作用提供了重要依据。

    Abstract:

    [Objectives] Site fidelity, defined as the return to and reuse of a previously occupied location, is a common behavior observed in many species. Factors influencing site fidelity include gender, age, season, among others. The Black-necked Crane Grus nigricollia, a first-level protected species in China, holds significant ecological and cultural value. Yanchiwan, located in the northern foothills of the Qilian Mountains in Gansu Province, serves as an important breeding and summering site for these cranes, marking the northernmost boundary of their known breeding range. Research on Black-necked Cranes in this region is crucial for their conservation. This study aims to investigate the differences in home range sizes among cranes of different ages during the summering and wintering periods, with a particular focus on the site fidelity of individuals born in Yanchiwan. [Methods] From 2018 to 2020, we captured juvenile Black-necked Cranes and fitted them with rings and satellite trackers. Individuals tracked for more than two summering periods were selected for analysis. Tracking data were filtered based on factors such as time, instantaneous speed, and accuracy. Kernel density estimation (KDE) methods were used to calculate the home range and core area for cranes of different ages during the summering and wintering periods use the “amt” package in R v. 4.2.3. The degree of home range overlap among different age groups was also assessed. Logarithmic transformations were applied to the home range and core area data, followed by differential tests. Statistical analyses were conducted using Student’s t test and Mann-Whitney U test, and QGIS was used for mapping. [Results] A total of 18 individuals were tracked over more than two summering periods. Juveniles exhibited smaller home range and core area compared to subadults during both summering and wintering periods (home range in summering period:t =﹣2.37, df = 28, P = 0.025; core area in summering period:t =﹣2.19, df = 28, P = 0.037; home range in wintering period:W = 128, P = 0.011; core area in wintering period:W = 110, P = 0.003). The largest home range and core area were observed in 1-year old individuals, but no significant differences were found between 1-year old and 2-year old subadults (Fig. 1). The degree of home range overlap did not significantly differ across age stages (P > 0.05). Notably, 33.33% of the 1-year old subadults did not return to their birthplace (n = 6) (Fig. 2), and one individual was recorded summering in Mongolia (Fig. 3). Additionally, Black-necked Cranes exhibited higher habitat fidelity during the wintering period across all age groups (Fig. 4). [Conclusion] This study demonstrates that Black-necked Cranes born in Yanchiwan exhibit marked exploratory behavior during the subadult stage, providing insights into the movement patterns of subadult cranes originating from this region. The findings underscore the critical role of the Yanchiwan breeding population in the overall population dynamics of Black-necked Cranes and highlight the significance of subadults in population dispersal. These results offer valuable information for understanding the contributions of the Yanchiwan breeding site to the broader conservation and management strategies for Black-necked Cranes.

    参考文献
    Bennett A J. 1989. Movements and home ranges of Florida sandhill cranes. The Journal of Wildlife Management, 53(3):830–836.
    BirdLife International. 2020. Grus nigricollis. The IUCN Red List of Threatened Species 2020:e.T22692162A180030167. https://dx. doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22692162A180030167.en.
    Blackburn E, Cresswell W. 2016. High winter site fidelity in a long-distance migrant:implications for wintering ecology and survival estimates. Journal of Ornithology, 157(1):93–108.
    Bodey T W, Cleasby I R, Bell F, et al. 2018. A phylogenetically controlled meta-analysis of biologging device effects on birds:Deleterious effects and a call for more standardized reporting of study data. Methods in Ecology and Evolution, 9(4):946–955.
    Bose S, Forrester T D, Brazeal J L, et al. 2017. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behavioral Ecology, 28(4):983–990.
    B?tsch Y, Arlettaz R, Schaub M. 2012. Breeding dispersal of Eurasian Hoopoes (Upupa epops) within and between years in relation to reproductive success, sex, and age. The Auk, 129(2):283–295.
    Brown D R, Long J A. 2007. What is a winter floater? Causes, consequences, and implications for habitat selection. The Condor, 109(3):548–565.
    Faille G, Dussault C, Ouellet J P, et al. 2010. Range fidelity:The missing link between caribou decline and habitat alteration? Biological Conservation, 143(11):2840–2850.
    Forrester T D, Casady D S, Wittmer H U. 2015. Home sweet home:fitness consequences of site familiarity in female black-tailed deer. Behavioral Ecology and Sociobiology, 69(4):603–612.
    Fryxell J M, Hazell M, B?rger L, et al. 2008. Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proceedings of the National Academy of Sciences of the United States of America, 105(49):19114–19119.
    Gao M, Erdenechimeg B, Purev-Ochir G, et al. 2023. Young, wild, and free-subadult White-naped Crane (Antigone vipio) exhibit wider home range movements than breeding adults during the summering period. Journal of Ornithology, 164(3):561–572.
    Goltz D M, Hess S C, Brinck K W, et al. 2008. Home range and movements of Feral Cats on Mauna Kea, Hawai’i. Pacific Conservation Biology, 14(3):177–184.
    Greenwood P J. 1980. Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour, 28(4):1140–1162.
    Hestbeck J B, Nichols J D, Malecki R A. 1991. Estimates of movement and site fidelity using mark-resight data of wintering Canada geese. Ecology, 72(2):523–533.
    Ivey G L, Dugger B D, Herziger C P, et al. 2015. Wintering ecology of sympatric subspecies of Sandhill Crane:Correlations between body size, site fidelity, and movement patterns. The Condor, 117(4):518–529.
    Li F S, Bishop M A, Drolma T. 2011. Power line strikes by Black- necked Cranes and Bar-headed Geese in Tibet Autonomous Region. Chinese Birds, 2(4):167–173.
    Lindberg M S, Sedinger J S. 1997. Ecological consequences of nest site fidelity in Black Brant. The Condor, 99(1):25–38.
    López-Calderón C, Hobson K A, Marzal A, et al. 2017. Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird. Scientific Reports, 7:18082.
    Louren?o P M, Alves J A, Reneerkens J, et al. 2016. Influence of age and sex on winter site fidelity of sanderlings Calidris alba. PeerJ, 4:e2517.
    Marra P P, Hobson K A, Holmes R T. 1998. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science, 282(5395):1884–1886.
    Merkle J A, Fortin D, Morales J M. 2014. A memory-based foraging tactic reveals an adaptive mechanism for restricted space use. Ecology Letters, 17(8):924–931.
    Mi C R, M?ller A P, Guo Y M. 2018. Annual spatio-temporal migration patterns of Hooded Cranes wintering in Izumi based on satellite tracking and their implications for conservation. Avian Research, 9(1):23–31.
    Pang C C, Sung Y H, Chung Y T, et al. 2023. Full migration routes of two Little Egrets (Egretta garzetta) display breeding and wintering site fidelity. Ornithological Science, 22(1):81–86.
    Raveling D G. 1979. Traditional use of migration and winter roost sites by Canada Geese. The Journal of Wildlife Management, 43(1):229–235.
    Rushing C S, Marra P P, Dudash M R. 2016. Winter habitat quality but not long-distance dispersal influences apparent reproductive success in a migratory bird. Ecology, 97(5):1218–1227.
    Ruther J, Thal K, Steiner S. 2011. Pheromone communication in Nasonia vitripennis:abdominal sex attractant mediates site fidelity of releasing males. Journal of Chemical Ecology, 37(2):161–165.
    Switzer P V. 1993. Site fidelity in predictable and unpredictable habitats. Evolutionary Ecology, 7(6):533–555.
    van Beest F M, Vander Wal E, Stronen A V, et al. 2013. Temporal variation in site fidelity:scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia, 173(2):409–420.
    Wang Y, Mi C R, Guo Y M. 2020a. Satellite tracking reveals a new migration route of Black-necked Cranes (Grus nigricollis) in Qinghai-Tibet Plateau. PeerJ, 8:e9715.
    Wang Z J, Guo Y M, Dou Z G, et al. 2020b. Autumn migration route and stopover sites of Black-necked Crane (Grus nigricollis) breeding in Yanchiwan Nature Reserve, China. Waterbirds, 43(1):94–100.
    Warren S M, Walsh A J, Merne O J, et al. 1992. Wintering site interchange amongst Greenland White-fronted Geese Anser albifrons flavirostris captured at Wexford Slobs, Ireland. Bird Study, 39(3):186–194.
    Wolf M, Frair J, Merrill E, et al. 2009. The attraction of the known:the importance of spatial familiarity in habitat selection in wapiti Cervuselaphus. Ecography, 32(3):401–410.
    车烨, 杨乐, 李忠秋. 2018. 西藏拉萨越冬黑颈鹤家庭群的警戒同步性. 生态学报, 38(4):1375–1381.
    陈嘉珈, 蒲真, 黄中鸿, 等. 2023. 全球黑颈鹤越冬种群分布与数量. 生物多样性, 31(6):97–106.
    官天培, 葛宝明, 谌利民, 等. 2015. 四川羚牛的家域与忠诚度. 生态学报, 35(6):1862–1868.
    韩雪松, 郭玉民. 2018. 基于野外观察的黑颈鹤个体行为谱构建. 野生动物学报, 39(1):58–79.
    黄中鸿, 陈嘉珈, 温立嘉, 等. 2023. 祁连山南麓网围栏对黑颈鹤的影响. 生物多样性, 31(6):107–114.
    郎雪敏, Gankhuyag Purev-Ochir, Oyunchimeg Terbish, 等. 2020. 滦河上游——白枕鹤西部种群的重要停歇地. 生物多样性, 28(10):1213–1221.
    李凤山. 1999. 贵州草海越冬黑颈鹤觅食栖息地选择的初步研究. 生物多样性, 7(4):257–262.
    李显达, 郭玉民. 2023. 基于卫星定位跟踪数据解读白头鹤的性别、年龄、繁殖及领域回归. 生态学报, 43(8):3137–3149.
    刘阳, 张正旺. 2005. 4种水鸟途经北京的新记录. 动物学杂志, 40(2):105.
    鲁长虎, 申守均. 2001. 黑龙江省证实有秃鹫分布. 野生动物, 22(3):19.
    Mary Anne Bishop, 李凤山. 2002. 农业耕作活动对西藏越冬黑颈鹤食性及食物可获得性的影响. 生物多样性, 10(4):393–398.
    色拥军, 窦志刚, 杨巨才, 等. 2020. 甘肃盐池湾黑颈鹤繁殖分布格局. 湿地科学与管理, 16(1):64–68.
    宋成军, 杨兴中, 李宇, 等. 2006. 秦岭大熊猫家域的季节、性别和年龄效应. 野生动物, 27(3):21–24.
    王博驰, 裴雯, 色拥军, 等. 2021. 卫星跟踪揭示撞击电线是黑颈鹤幼鸟越冬地死亡的主要原因. 动物学杂志, 56(2):161–170.
    王楠, 朱平芬, 万蒙, 等. 2013. 四川海子山黑颈鹤繁殖种群的分布与数量. 生态与农村环境学报, 29(2):265–268.
    吴至康, 李筑眉, 王有辉, 等. 1993. 黑颈鹤迁徙研究初报. 动物学报, 39(1):105–106.
    杨晓君, 钱法文, 李凤山, 等. 2005. 中国首次卫星跟踪黑颈鹤研究初报. 动物学研究, 26(6):657–658.
    袁磊, 马浩, 程芸, 等. 2015. 罗布泊野骆驼的家域特征及其意义. 生物多样性, 23(3):314–320.
    张晋东, Hull V, 欧阳志云. 2013. 活动区研究进展. 生态学报, 33(11):3269–3279.
    张久红, 洪兆春, 崔建钊, 等. 2023. 景观基质对雅江中游河谷黑颈鹤冬季觅食地选择的影响. 生态学报, 43(18):7701–7714.
    张同, 马鸣, 张翔, 等. 2012. 东昆仑-阿尔金山地区黑颈鹤种群分布与秋季数量变化. 动物学杂志, 47(6):31–35.
    赵巍, 鲁海, 孙建华, 等. 2023. 内蒙古鸟类新记录——黑颈鹤. 四川动物, 42(3):332.
    朱冰润, 刘逸侬, 阙品甲, 等. 2017. 大红鹳在中国的分布现状与潜在适宜分布区预测. 北京师范大学学报:自然科学版, 53(5):542–547.
    相似文献
    引证文献
引用本文

杨巨才,温立嘉,郭玉民.2024.甘肃盐池湾出生黑颈鹤活动区及栖息地忠诚度的年龄差异.动物学杂志,59(6):857-865.

复制
文章指标
  • 点击次数:152
  • 下载次数: 368
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-16
  • 在线发布日期: 2024-12-19