云南省四种家鼠下颌骨形态差异——基于传统测量与几何形态分析
作者:
作者单位:

1.大理大学病原与媒介生物研究所,云南省自然疫源性疾病防控技术重点实验室 大理 671000;2.云南省地方病防治所,云南省自然疫源性疾病防控技术重点实验室 大理 671000

作者简介:

周宏伟,男,硕士研究生;研究方向:媒介生物学;E-mail:2931172307@qq.com。

基金项目:

云南省基础研究专项-面上项目(No. 202401AT070077),国家自然科学基金项目(No. 32260277),中国科学院昆明动物研究所遗传资源与进化国家重点实验室开放课题(No. GREKF22-03);


Analysis of Mandibular Morphological Differences Between Four Rattus Species in Yunnan Province, China—Based on Traditional Measurements and Geometric Analysis
Author:
Affiliation:

1.Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali 671000; 2.Yunnan Institute of Endemic Disease Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [4]
  • | |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探讨黄胸鼠(Rattus tanezumi)、大足鼠(R. nitidus)、褐家鼠(R. norvegicus)及黑缘齿鼠(R. andamanensis)的下颌骨种间形态差异,为上述物种提供新的鉴定依据,提高形态分类的准确性,本研究对4种共40号标本的下颌骨进行了传统线性测量分析和几何形态测量分析。使用单因素方差分析比较了传统形态测量值的种间差异。通过主成分分析、典型变量分析和系统发育信号检验分析了4种家鼠下颌骨的几何形态差异。通过Bayes判别分析和函数判别法分别检验了不同方法对物种鉴定的准确性。传统形态测量的单因素方差分析表明,4种家鼠下颌骨长、下臼齿列长、下颌高和下颌齿隙传统测量值存在显著差异,且黄胸鼠与黑缘齿鼠差异最大,大足鼠与褐家鼠差异最小;几何形态测量分析表明,黄胸鼠与黑缘齿鼠下颌骨形态较为相近,黄胸鼠与大足鼠下颌骨形态差异最大,4种家鼠下颌骨形态差异主要集中在冠状突、角突和踝状突;传统测量值的Bayes交叉验证判别分析对4个物种标本的正确分类为72.5%,几何形态判别函数分析结果表明,除褐家鼠-黑缘齿鼠(60%)外,另几个物种的两两交叉验证结果都达到70%及以上,表明两种分析方法具有一定的可靠性。下颌骨形态可以作为4种家鼠的鉴别依据,几何形态测量方法可以提高4种家鼠的分类准确性。在今后的研究中可以运用该方法在更多类群中展开验证,获得更全面的形态差异信息,进而为基层疾控单位工作人员开展鼠源性疾病控制和预防工作时的物种鉴定提供参考依据。

    Abstract:

    [Objectives] Rodents act as crucial hosts in transmitting diseases such as the plague. Having efficient methods to identify rodent species is essential for disease prevention. Species are typically identified based on morphological features such as fur and body structures in the field. However, rodents are highly diverse and have variations within and between species. Examining stable and sturdy skulls can help identify the species considering the unreliability of external appearance. Currently, there is limited research on the morphological distinctions of rat mandibles. We aimed to explore the morphological differences among four rat species in the Yunnan Province, including Rattus tanezumi, R. nitidus, R. norvegicus and R. andamanensis, and provide more efficient and accurate classification criteria for species identification. [Methods] We carried out traditional linear measurement analysis and geometric morphometrics analysis on 40 mandibular specimens (10 for each species). One-way ANOVA analysis was employed to examine the differences in traditional measurements. Principal component analysis, canonical variable analysis, and phylogenetic signal test were used to analyze the differences in the geometric morphology of the mandibles of the four Rattus species. The accuracy of different methods for species identification was tested by Bayes discriminant analysis and function discriminant method. [Results] There were overall significant differences in mandibular length, length of the molar row, mandibular height, and length of the diastema between the four species, with the difference between R. tanezumi and R. andamanensis being the most prominent (Table 1). The results of geometric morphometrics showed that the mandibular morphology of R. tanezumi was similar to that of R. andamanensis, and the mandibular morphology of R. tanezumi was the most different from that of R. nitidus. The morphological differences of the mandible between four species were mainly detected in the coronoid, angular, and condylar processes (Fig. 4 and 6). The species classification accuracy results of Bayes discriminant analysis and discriminant function analysis both showed that the two methods have considerable reliability in species classification accuracy (Table 2 and Fig. 7). [Conclusion] The mandibular morphology can be used as the basis for the identification between the four species. The geometric morphometrics analysis method can help identify species between the four Rattus species. In subsequent studies, this method can be applied to verify additional groups to obtain more extensive information on morphological differences. This will serve as a reference for species identification, further promoting the control and prevention of rodent-borne diseases.

    参考文献
    Adams D C, Rohlf F J, Slice D E. 2013. A field comes of age:geometric morphometrics in the 21st century. Hystrix, 24(1):7–14.
    Blomberg S P, Garland T Jr, Ives A R. 2003. Testing for phylogenetic signal in comparative data:behavioral traits are more labile. Evolution, 57(4):717–745.
    Bookstein F L. 1991. Morphometric Tools for Landmark Data:Geometry and Biology. New York:Cambridge University Press:435.
    Chaval Y, Waengsothorn S, Morand S, et al. 2016. A new taxonomic toolkit for identification of two sympatric species of Bandicota (Rodentia:Muridae) from mainland Southeast Asia. Mammalia, 80(4):425–439.
    Ginot S, Herrel A, Claude J, et al. 2019. Morphometric models for estimating bite force in Mus and Rattus:mandible shape and size perform better than lever-arm ratios. The Journal of Experimental Biology, 222(12):jeb204867.
    Hautier L, Michaux J, Marivaux L, et al. 2008. Evolution of the zygomasseteric construction in Rodentia, as revealed by a geometric morphometric analysis of the mandible of Graphiurus (Rodentia, Gliridae). Zoological Journal of the Linnean Society, 154(4):807–821.
    Ibrahim A, Salem I, Chetoui M, et al. 2017. Morphometric analysis of the insular and mainland Rattus in Tunisia. Biologia, 72(8):927–934.
    Kang Y K, Wang Z C, Yao B H, et al. 2023. Environmental and climatic drivers of phenotypic evolution and distribution changes in a widely distributed subfamily of subterranean mammals. Science of the Total Environment, 878:163177.
    Klingenberg C P. 2011. MorphoJ:an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2):353–357.
    Liu S Y, He K, Chen S D, et al. 2018. How many species of Apodemus and Rattus occur in China? A survey based on mitochondrial cyt b and morphological analyses. Zoological Research, 39(5):309–320.
    McIntosh A F, Cox P G. 2019. The impact of digging on the evolution of the rodent mandible. Journal of Morphology, 280(2):176– 183.
    Michaux J, Chevret P, Renaud S. 2007. Morphological diversity of Old World rats and mice (Rodentia, Muridae) mandible in relation with phylogeny and adaptation. Journal of Zoological Systematics and Evolutionary Research, 45(3):263–279.
    Mitteroecker P, Gunz P. 2009. Advances in geometric morphometrics. Evolutionary Biology, 36(2):235–247.
    Morales-García N M, Gill P G, Janis C M, et al. 2021. Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals. Communications Biology, 4(1):242.
    Musser G G, Carleton M D. 2005. Superfamily Muroidea // Wilson D E, Reeder D M. Mammal Species of the World:A Taxonomic and Geographic Reference. 3rd ed. Baltimore:Johns Hopkins University Press.
    R Core Team. 2021. R:a language and environment for statistical computing. R Foundation for Statistical Computing.
    Renaud S, Chevret P, Michaux J. 2007. Morphological vs. molecular evolution:ecology and phylogeny both shape the mandible of rodents. Zoologica Scripta, 36(5):525–535.
    Rohlf F. 2017. tpsDig, v. 2.30. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.
    Rohlf F. 2019. tpsUtil, v. 1.78. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.
    Rohlf F. 2021. tpsSmall, v. 1.36. Department of Ecology and Evolution, State University of New York at Stony Brook, New York.
    Tamura K, Stecher G, Kumar S. 2021. MEGA11:molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7):3022–3027.
    Wilson D E, Lacher T E, Mittermeier R A. 2017. Handbook of the Mammals of the World. Vol. 7. Rodents Ⅱ. Barcelona:Lynx Edicions.
    Zorenko T, Kagainis U, Golenishchev F, et al. 2023. Geometric morphometrics of the cranium and mandible in social voles of the “guentheri” group (Arvicolinae:Sumeriomys). Diversity, 15(1):83.
    陈燕, 岳亚先, 王涛, 等. 2023. 褐家鼠和黄胸鼠体型和头骨物种鉴定特征值筛选. 兽类学报, 43(3):322–332.
    蒋志刚, 马勇, 吴毅, 等. 2015. 中国哺乳动物多样性及地理分布. 北京:科学出版社.
    潘清华, 王应祥, 岩崑. 2007. 中国哺乳动物彩色图鉴. 北京:中国林业出版社.
    Smith A, 解焱. 2009. 中国兽类野外手册. 长沙:湖南教育出版社.
    粟海军. 2019. 利用几何形态测量学方法分析外来近似物种形态差异与亲疏关系. 生物学杂志, 36(4):89–93.
    魏辅文. 2022. 中国兽类分类与分布. 北京:科学出版社.
    夏霖, 杨奇森, 马勇, 等. 2006. 兽类头骨测量标准Ⅲ:啮齿目、兔形目. 动物学杂志, 41(5):68–71.
    杨红, 张子慧. 2011. 中华姬鼠与大林姬鼠头骨的几何形态学研究. 四川动物, 30(5):691–695, 662.
    杨奇森, 夏霖, 马勇, 等. 2005. 兽类头骨测量标准Ⅰ:基本量度. 动物学杂志, 40(3):50–56.
    杨清銮, 翁涛平, 李杨. 2019. 鼠疫的流行病学概述. 微生物与感染, 14(6):333–337.
    赵晓进, 褚颜魁, 赵晓芳, 等. 2021. 猕猴髌骨性差的几何形态分析. 河南师范大学学报:自然科学版, 49(4):114–118.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周宏伟,谢梦茹,邵宗体,尹鹏吾,郭宪国,宋文宇.2024.云南省四种家鼠下颌骨形态差异——基于传统测量与几何形态分析.动物学杂志,59(6):919-930.

复制
文章指标
  • 点击次数:174
  • 下载次数: 365
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-01-30
  • 在线发布日期: 2024-12-19