短期高营养饮食对日本鹌鹑代谢产热及消化道功能的影响
作者:
作者单位:

温州大学生命与环境科学学院 温州 325035

作者简介:

姚雅棋,女,学士;研究方向:动物生理生态学;E-mail:20211231133@stu.wzu.edu.cn。

基金项目:

国家自然科学基金项目(No. 32171497);


Effects of Short-Term High-Nutrient Foods on Thermogenesis and Digestive Tract Function of Japanese Quails
Author:
Affiliation:

College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    食物的质量对鸟类的代谢产热和消化道功能有重要影响。本研究通过改变食物中脂肪和蛋白质含量的质量百分比来调整食物营养程度,探究食物质量对日本鹌鹑(Coturnix japonica)产热和消化道功能的影响。将实验动物分为低营养组和高营养组,用实验饲料(低营养饲料:蛋白质34%,脂肪8%;高营养饲料:蛋白质51%,脂肪15%)饲喂14 d后,测定其体重、基础代谢率(BMR)和体脂率,以及肝、心、肾和肌肉的重量及其线粒体状态4呼吸(S4R)和细胞色素C氧化酶(COX)活性,小肠重量及其消化酶(纤维素酶、氨基肽酶、淀粉酶和脂肪酶)活性。结果显示,与低营养组相比,食物质量改变14 d以后高营养组动物的体重显著增加、基础代谢率(BMR)有升高趋势、体脂率显著增加;肝、心、肾和肌肉的重量和其线粒体状态4呼吸(S4R)无显著变化,肾细胞色素C氧化酶(COX)活性显著升高,但是未发现肝、肌肉和心细胞色素C氧化酶(COX)活性的显著差异;消化道重量和小肠重量均显著降低,单位质量小肠的氨基肽酶和脂肪酶活性显著升高、淀粉酶活性显著降低,整体小肠的纤维素酶、氨基肽酶和淀粉酶活性显著下降。结果表明,当食物质量改变时,鸟类可以通过调整自身代谢产热和消化道功能的方式发生可塑性适应反应,这些调整贯穿整体、器官、细胞和消化酶活性等多个水平。

    Abstract:

    [Objectives] Food quality is one of the most important factors affecting the thermogenesis and digestion of birds. However, the plasticity of the birds' response to food quality is still unclear. This study aims to understand how birds adapt their thermogenesis and digestion in response to changes in food resources. [Methods] We modified the nutrient content of the food by adjusting the percentage of fat and protein (Table 1), 20 male Japanese Quails Coturnix japonica were randomly divided into 2 groups:high nutrition group (HNG, n = 10) and low nutrition group (LNG, n = 10). In this study, we measured body weight, basal metabolic rate (BMR), body fat content, tissue weight (liver, heart, kidney, muscle, and small intestine), mitochondrial state 4 respiration (S4R), cytochrome C oxidase (COX) activity, and the activities of digestive enzymes (cellulase, aminopeptidase, amylase, and lipase) in the small intestine of Japanese Quails. We conducted covariance analysis using body weight as a covariable to analyze BMR and tissue weight. Additionally, we used t-test to compare body fat content, S4R and COX activity of tissues, and the activity of small intestinal digestive enzymes in Japanese Quail fed different diets. [Results] The results showed that the high nutrition diet significantly increased the body weight and body fat content of Japanese Quails (Fig. 1c), but no increase was found in mitochondrial S4R and COX activity in liver, muscle, and heart (Table 2). Compared with the low nutrition group, the weight of the digestive tract (Fig. 2), and the activities of aminopeptidase and lipase per unit mass of small intestine were significantly increased in the high nutrition group (Figs. 3b, d). However, the activities of amylase were significantly decreased in the high nutrition group (Fig. 3c), while the activities of cellulase, aminopeptidase and amylase in the whole small intestine were significantly decreased (Figs. 3a﹣c). [Conclusion] In conclusion, in order to adapt to changes in food resources and quality, Japanese Quails can develop plastic adaptations by regulating metabolic thermogenesis and digestive tract functions at multiple levels, including whole, organ, cellular, and enzymatic.

    参考文献
    AL-Mansour M I. 2004. Seasonal variation in basal metabolic rate and body composition within individual sanderling bird Calidrisalba. Journal of Biological Sciences, 4(4):564–567.
    Barceló G, Salinas J, Sabat P. 2012. Body mass, phylogeny and diet composition affects kidney morphology in passerine birds. Journal of Morphology, 273(8):842–849.
    Bech C, R?nning B, Moe B. 2004. Individual variation in the basal metabolism of Zebra finches Taeniopygia guttata:no effect of food quality during early development. International Congress Series, 1275:306–312.
    Brand M D, Bishop T, Boutilier R G, et al. 2000. Mitochondrial proton conductance, standard metabolic rate and metabolic depression // Gerhard H, Klingenspor M. Life in the Cold. Springer Berlin Heidelberg, 413–430.
    Brzek P, Kohl K D, Caviedes-Vidal E, et al. 2011. Fully reversible phenotypic plasticity of digestive physiology in young house sparrows:lack of long-term effect of early diet composition. Journal of Experimental Biology, 214(16):2755–2760.
    Caviedes-Vidal E, Afik D, del Rio C M, et al. 2000. Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus):testing an adaptive hypothesis. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 125(1):11–24.
    Chen Y H, Zhao H B. 2019. Evolution of digestive enzymes and dietary diversification in birds. PeerJ, 7:e6840.
    Cherel Y, Robin J P, Le Maho Y. 1988. Physiology and biochemistry of long-term fasting in birds. Canadian Journal of Zoology, 66(1):159–166.
    Dall S R X, Witter M S. 1998. Feeding interruptions, diurnal mass changes and daily routines of behaviour in the zebra finch. Animal Behaviour, 55(3):715–725.
    Derting T L, Bogue B A. 1993. Responses of the gut to moderate energy demands in a small herbivore (Microtus pennsylvanicus). Journal of Mammalogy, 74(1):59–68.
    Diamond J. 1991. Evolutionary design of intestinal nutrient absorption:enough but not too much. Physiology, 6(2):92–96.
    Diamond J, Hammond K. 1992. The matches, achieved by natural selection, between biological capacities and their natural loads. Experientia, 48(6):551–557.
    Dykstra C R, Karasov W H. 1992. Changes in gut structure and function of house wrens (Troglodytes aedon) in response to increased energy demands. Physiological Zoology, 65(2):422– 442.
    Estabrook R W. 1967. Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods in Enzymology, 10(3):41–47.
    Firth N L, Ross D A, Thonney M L. 1985. Comparison of ether and chloroform for Soxhlet extraction of freeze-dried animal tissues. Journal of the Association of Official Analytical Chemists, 68(6):1228–1231.
    Gao W R, Zhu W L, Wang Z K. 2016. The role of dietary fiber content on energy metabolism, thermogenesis, and leptin in Chevrier’s field mouse (Apodemus chevrieri). Canadian Journal of Zoology, 94(6):395–404.
    Geluso K, Hayes J P. 1999. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiological and Biochemical Zoology, 72(2):189–197.
    Goldstein D L, Guntle L, Flaugher C. 2001. Renal response to dietary protein in the house sparrow Passer domesticus. Physiological and Biochemical Zoology, 74(3):461–467.
    J?rgensen H, Zhao X Q, Theil P K, et al. 2008. Effect of graded levels of rapeseed oil in isonitrogenous diets on the development of the gastrointestinal tract, and utilisation of protein, fat and energy in broiler chickens. Archives of Animal Nutrition, 62(4):331–342.
    Karasov W H. 1996. Digestive plasticity in avian energetics and feeding ecology // Carey C. Avian Energetics and Nutritional Ecology. Boston, MA:Springer US:61–84.
    Kehoe F P, Ankney C D, Alisauskas R T. 1988. Effects of dietary fiber and diet diversity on digestive organs of captive Mallards (Anas platyrhynchos). Canadian Journal of Zoology, 66(7):1597–1602.
    Kohl K D, Ciminari M E, Chediack J G, et al. 2017. Modulation of digestive enzyme activities in the avian digestive tract in relation to diet composition and quality. Journal of Comparative Physiology B, 187(2):339–351.
    Levey D J, Place A R, Rey P J, et al. 1999. An experimental test of dietary enzyme modulation in pine warblers Dendroica pinus. Physiological and Biochemical Zoology, 72(5):576–587.
    Li C X, Liu C Y, Hu P X, et al. 2022. Seasonal adjustments in body mass and basal thermogenesis in Chinese hwameis (Garrulax canorus):the roles of temperature and photoperiod. Journal of Experimental Biology, 225(17):jeb244502.
    McKechnie A E, Chetty K, Lovegrove B G. 2007. Phenotypic flexibility in the basal metabolic rate of laughing doves:responses to short-term thermal acclimation. Journal of Experimental Biology, 210(1):97–106.
    McKechnie A E, Wolf B O. 2004. The allometry of avian basal metabolic rate:good predictions need good data. Physiological and Biochemical Zoology, 77(3):502–521.
    McNab B K. 1986. The influence of food habits on the energetics of eutherian mammals. Ecological Monographs, 56(1):1–19.
    McNab B K. 2009. Ecological factors affect the level and scaling of avian BMR. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 152(1):22–45.
    McWilliams S R, Karasov W H. 2001. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 128(3):579–593.
    Minvielle F. 2004. The future of Japanese quail for research and production. World’s Poultry Science Journal, 60(4):500–507.
    Pei Y, Wang D, Hume I D. 2001. Effects of dietary fibre on digesta passage, nutrient digestibility, and gastrointestinal tract morphology in the granivorous Mongolian gerbil (Meriones unguiculatus). Physiological and Biochemical Zoology, 74(5):742–749.
    Piersma T, Bruinzeel L, Drent R, et al. 1996. Variability in basal metabolic rate of a long-distance migrant shorebird (red knot, Calidris canutus) reflects shifts in organ sizes. Physiological Zoology, 69(1):191–217.
    Piersma T, Drent J. 2003. Phenotypic flexibility and the evolution of organismal design. Trends in Ecology & Evolution, 18(5):228–233.
    Piersma T, Lindstr?m A. 1997. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends in Ecology & Evolution, 12(4):134–138.
    Platel K, Srinivasan K. 2000. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Die Nahrung, 44(1):42–46.
    Rott K H, Caviedes-Vidal E, Karasov W H. 2017. Intestinal digestive enzyme modulation in house sparrow nestlings occurs within 24 h of a change in diet composition. Journal of Experimental Biology, 220(Pt 15):2733–2742.
    Rozman J, Runciman D, Zann R A. 2003. Seasonal variation in body mass and fat of Zebra Finches in south-eastern Australia. Emu - Austral Ornithology, 103(1):11–19.
    Sabat P, Cavieres G, Veloso C, et al. 2009. Intraspecific basal metabolic rate varies with trophic level in rufous-collared sparrows. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 154(4):502–507.
    Sabat P, Sepúlveda-Kattan E, Maldonado K. 2004. Physiological and biochemical responses to dietary protein in the omnivore passerine Zonotrichia capensis (Emberizidae). Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 137(2):391–396.
    Savory C J, Gentle M J. 1976. Effects of dietary dilution with fibre on the food intake and gut dimensions of Japanese quail. British Poultry Science, 17(6):561–570.
    Shang Q H, Wu D, Liu H S, et al. 2020. The impact of wheat bran on the morphology and physiology of the gastrointestinal tract in broiler chickens. Animals, 10(10):1831.
    Shi L L, Fan W J, Zhang J Y, et al. 2017. The roles of metabolic thermogenesis in body fat regulation in striped hamsters fed high-fat diet at different temperatures. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 212:35–44.
    Song Z G, Wang D H. 2006. Basal metabolic rate and organ size in Brandt’s voles (Lasiopodomys brandtii):effects of photoperiod, temperature and diet quality. Physiology & Behavior, 89(5):704–710.
    Starck J M, Kloss E. 1995. Structural responses of Japanese quail intestine to different diets. DTW Deutsche Tierarztliche Wochenschrift, 102(4):146–150.
    Starck J M, Rahmaan G H. 2003. Phenotypic flexibility of structure and function of the digestive system of Japanese quail. Journal of Experimental Biology, 206(11):1887–1897.
    Sundin U, Moore G, Nedergaard J, et al. 1987. Thermogenin amount and activity in hamster brown fat mitochondria:effect of cold acclimation. American Journal of Physiology, 252(5 Pt 2):R822–R832.
    Swanson D L, Garland T Jr. 2009. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions. Evolution, 63(1):184–194.
    Teyssier J R, Brugaletta G, Sirri F, et al. 2022. A review of heat stress in chickens. part II:insights into protein and energy utilization and feeding. Frontiers in Physiology, 13:943612.
    Veloso C, Bozinovic F. 1993. Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology, 74(7):2003–2010.
    Williams J B, Tieleman B I. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. Journal of Experimental Biology, 203(Pt 20):3153–3159.
    Williamson S A, Jones S K, Munn A J. 2014. Is gastrointestinal plasticity in king quail (Coturnix chinensis) elicited by diet-fibre or diet-energy dilution? Journal of Experimental Biology, 217(Pt 11):1839–1842.
    Wu M X, Zhou L M, Zhao L D, et al. 2015. Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 179:113–119.
    Yang H, Zhou X, Wang Z, et al. 2013. Effects of different diets on growth performance, physiological parameters of digestive tract and apparent digestibility in geese. African Journal of Biotechnology, 12:1288–1296.
    Zhao Z J, Wang D H. 2009. Plasticity in the physiological energetics of Mongolian gerbils is associated with diet quality. Physiological and Biochemical Zoology, 82(5):504–515.
    Zheng W H, Li M, Liu J S, et al. 2014b. Seasonal variation of metabolic thermogenesis in Eurasian tree sparrows (Passer montanus) over a latitudinal gradient. Physiological and Biochemical Zoology, 87(5):704–718.
    Zheng W H, Liu J S, Swanson D L. 2014a. Seasonal phenotypic flexibility of body mass, organ masses, and tissue oxidative capacity and their relationship to resting metabolic rate in Chinese bulbuls. Physiological and Biochemical Zoology, 87(3):432–444.
    Zhou L M, Xia S, Chen Q, et al. 2016. Phenotypic flexibility of thermogenesis in the hwamei (Garrulax canorus):responses to cold acclimation. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 310(4):R330–R336.
    Zhu W L, Zhang L, Gao W R, et al. 2014. Effects of temperature and diet on energy budget and hormone concentrations in south China field mouse, Apodemus draco, from Hengduan Mountain region. Pakistan Journal of Zoology, 46(2):485–496.
    毕中强, 闻靖, 施璐璐, 等. 2018. 温度和高脂食物对黑线仓鼠代谢产热和体脂累积的影响. 兽类学报, 38(4):384–392.
    龚雪娜, 贾婷, 张浩, 等. 2021. 横断山不同海拔地区大绒鼠面对高糖食物变化的生理和行为响应. 动物学杂志, 56(4):569–581.
    柳劲松, 李铭, 邵淑丽. 2008. 树麻雀肝脏和肌肉产热特征的季节性变化. 动物学报, 54(5):777–784.
    柳劲松, 宋春光, 王晓恒, 等. 2004. 燕雀和麻雀代谢产热及消化道形态特征比较. 动物学杂志, 39(3):2–7.
    王德华, 杨明, 刘全生. 2009. 小型哺乳动物生理生态学研究与进化思想. 兽类学报, 29(4):343–351.
    王家妮, 程如越, 罗雅亭, 等. 2021. 高脂饲料诱导小鼠代谢综合征及对肠道发育、肝脏功能和肠道菌群的影响. 卫生研究, 50(1):93–99.
    王丽莎, 庞有志. 2013. 鹌鹑的实验动物学价值. 生物学通报, 48(5):8–11.
    徐兴军, 邵淑丽, 张伟伟, 等. 2012. 春季树麻雀体内几种消化酶活性研究. 四川动物, 31(5):782–785.
    徐兴军, 田金波, 王有祥, 等. 2018. 食物组分差异对树麻雀能量代谢及消化道形态结构的影响. 浙江农林大学学报, 35(2):347–354.
    张志强, 王德华. 2009. 长爪沙鼠脏器重量和肠道长度的季节性变化. 兽类学报, 29(3):294–301.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚雅棋,夏绮,黄婷,李晨星,闻靖,李铭.2025.短期高营养饮食对日本鹌鹑代谢产热及消化道功能的影响.动物学杂志,60(1):32-44.

复制
文章指标
  • 点击次数:48
  • 下载次数: 64
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-05
  • 在线发布日期: 2025-03-04