扬子鳄栖息地重金属含量及生物积累
作者:
作者单位:

1.安徽师范大学生命科学学院 芜湖 241000;2.安徽扬子鳄国家级自然保护区管理局 宣城 242099

作者简介:

党雅婷,女,硕士研究生;研究方向:保护生物学;E-mail:dytvb411@163.com。

基金项目:

安徽省研究生教育质量工程项目(No. 2022zyxwjxalk027);


Heavy Metal Content and Bioaccumulation in Habitats Used by Alligator sinensis
Author:
Affiliation:

1.College of Life Sciences, Anhui Normal University, Wuhu 241000; 2.Chinese Alligator National Nature Reserve Administration in Anhui, Xuancheng 242099, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了评估扬子鳄(Alligator sinensis)栖息地面临的重金属污染风险及长期生物积累,本研究于2021年5月和10月在安徽扬子鳄国家级自然保护区的8个样地内对水塘中的水、底部土壤沉积物以及圈养扬子鳄的饲料和已孵化的卵壳进行了重金属检测。8个样地中,夏渡样地生活着圈养扬子鳄种群,朱村、高井庙、杨林、红星、双坑、中桥和长乐样地为野外种群栖息地。研究聚焦于汞(Hg)、镉(Cd)、铜(Cu)、锌(Zn)、铬(Cr)、砷(As)和铅(Pb)7种重金属元素,采用综合污染指数(R)和地质积累指数(Igeo)评估污染等级。使用独立样本t检验分析5月与10月环境样本中重金属含量的差异,以生物富集系数(BCF)和生物放大系数(BMF)分析卵壳中重金属元素的生物积累情况。结果显示:1)5月和10月的栖息地水环境中As、Cu和Zn的含量存在显著差异,但水环境总体无污染(R < 1)。仅Hg含量高于《地表水环境质量标准》,因此Hg具有潜在威胁;2)5月和10月的栖息地土壤沉积物中Hg、Zn、Cr和Cd的含量差异显著,其中Cd在5月表现为无污染,10月上升至偏中度污染(Igeo = 1.56),而Hg在5月(Igeo = 0.77)和10月(Igeo = 0.30)均表现为轻微污染;3)卵壳中Cr和Pb含量超标,夏渡样地的数值高于其他样地;4)水环境中Cu和Zn(夏渡样地)的生物富集系数范围为2.05 ~ 38.61,卵壳对饲料中As、Cu、Zn和Cr的生物放大系数范围为1.26 ~ 4.64。本研究表明,Cu和Zn通过水环境积累于卵壳中,而圈养扬子鳄卵壳中的重金属也通过食物链积累。土壤沉积物中长期积累的Pb元素可能导致卵壳中Pb含量超标。值得注意的是,圈养扬子鳄卵壳中的重金属含量高于野外种群。重金属污染物通过环境和食物链的生物积累可能已经对保护区内扬子鳄的生殖产生了负面影响。因此,控制栖息地环境中Hg和Cd污染源并加强饲料的安全性是当务之急。

    Abstract:

    [Objectives] This study aims to assess the risks of heavy metal pollution and long-term biological accumulation faced by the habitat of Alligator sinensis. In May and October 2021, heavy metal concentrations in water, soil sediments, feed for captive A. sinensis, and hatched eggshells were tested in eight sample areas within the National Nature Reserve of Chinese Alligator in Anhui Province. Among these, the Xiadu area hosts a captive population, while the Zhu Village, Gaojingmiao, Yanglin, Hongxing, Shuangkeng, Zhongqiao, and Changle areas harbor wild populations. The research focused on seven elements:mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn), chromium (Cr), arsenic (As), and lead (Pb). [Methods] The pollution levels in water and sediment contamination were evaluated using the comprehensive pollution index (R) and the Muller index (Igeo). Independent samples t-tests were used to analyze the differences in heavy metal concentrations between the environmental samples from May and October. To minimize harm, hatched eggshells were utilized to investigate heavy metal bioaccumulation instead of live individuals. The biological enrichment coefficient (BCF) indicated the accumulation of heavy metals from the environment, while the biological magnification coefficient (BMF) represented accumulation through the food chain. [Results] 1) Significant differences were observed in the concentrations of As, Cu, and Zn between the water samples from May and October (Table 1). In comparison to October, As and Zn concentrations were higher in May, while Cu concentrations were lower during that month. The comprehensive pollution index indicated that the water environment was free from heavy metal pollution (R < 1). However, the concentration of Hg exceeded the “Environmental Quality Standards for Surface Water,” suggesting that Hg poses a potential threat. 2) Significant differences were also noted in the concentrations of Hg, Zn, Cd, and Cr in the sediment between May and October (Table 2). Compared to October, Hg and Zn concentrations were higher in May, whereas Cd and Cr concentrations were lower. Specifically, Cd was non-polluted in May and increased to moderately polluted levels in October (Igeo = 1.56). Meanwhile, Hg exhibited slight pollution in both May (Igeo = 0.77) and October (Igeo = 0.30) (Fig. 1). 3) Concentrations of Cr and Pb in the eggshells exceeded the standards, with higher levels recorded in the Xiadu area compared to other areas (Table 3). 4) The BCF values for Cu and Zn in the water from the Xiadu area ranged from 2.05 to 38.61 (Fig. 2a), while all eggshells did not accumulate heavy metals from the sediment (Fig. 2b). The BMF values for As, Cu, Zn, and Cr in the feed ranged from 1.26 to 4.64. [Conclusion] This study showed that Cu and Zn were effectively accumulated in A. sinensis eggshells through the water environment. Additionally, captive populations were able to accumulate heavy metals through the food chain. Long-term accumulation of Pb in soil sediments may have led to excessive Pb content in eggshells. The study found that heavy metal concentrations in eggshells of captive populations were higher than those in wild populations. Bioaccumulation from both the environment and the food chain may have already negatively affected the reproduction of A. sinensis within the reserve. Therefore, it is essential to control Hg and Cd pollution sources and to improve the safety of the feed.

    参考文献
    Abbasa T, Nazir S, Overgard K I, et al. 2015. Hazards of mercury- safety perspectives and measures. Chemical Engineering Transactions, 43:2143–2148.
    Akearok J A, Hebert C E, Braune B M, et al. 2010. Inter- and intraclutch variation in egg mercury levels in marine bird species from the Canadian Arctic. Science of the Total Environment, 408(4):836–840.
    Ankley G T, Di Toro D M, Hansen D J, et al. 1996. Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15(12):2056–2066.
    Blok J. 2005. Environmental exposure of road borders to zinc. Science of the Total Environment, 348(1–3):173–190.
    Deoli N T, Mikolajczyk A, Fusilier Z, et al. 2021. Elemental composition of alligator eggshell and eggshell membrane using micro-PIXE. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 502:80–84.
    du Preez M, Govender D, Kylin H, et al. 2018. Metallic elements in Nile crocodile eggs from the Kruger National Park, South Africa. Ecotoxicology and Environmental Safety, 148:930–941.
    Ehsanpour M, Afkhami M, Khoshnood R, et al. 2014. Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawksbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran. Bulletin of Environmental Contamination and Toxicology, 92(6):667–673.
    Frossard A, Coppo G C, Louren?o A T, et al. 2021. Metal bioaccumulation and its genotoxic effects on eggs and hatchlings of giant Amazon river turtle (Podocnemis expansa). Ecotoxicology, 30(4):643–657.
    Gall J E, Boyd R S, Rajakaruna N. 2015. Transfer of heavy metals through terrestrial food webs:a review. Environmental Monitoring and Assessment, 187(4):201.
    Gamberg M, Braune B, Davey E, et al. 2005. Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic. Science of the Total Environment, 351:148–164.
    Gholamhosseini A, Banaee M, Soltanian S, et al. 2022. Heavy metals in the blood serum and feces of mugger crocodile (Crocodylus palustris) in Sistan and Baluchistan Province, Iran. Biological Trace Element Research, 200(7):3336–3345.
    Goessler W, Maher W, Irgolic K J, et al. 1997. Arsenic compounds in a marine food chain. Fresenius’ Journal of Analytical Chemistry, 359(4):434–437.
    Jiang Z, Xu N, Liu B, et al. 2018. Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China. Ecotoxicology and Environmental Safety, 157:1–8.
    Kumar M, Furumai H, Kasuga I, et al. 2020. Metal partitioning and leaching vulnerability in soil, soakaway sediments, and road dust in the urban area of Japan. Chemosphere, 252:126605.
    Lance V A, Horn T R, Elsey R M, et al. 2006. Chronic incidental lead ingestion in a group of captive-reared alligators (Alligator mississippiensis):possible contribution to reproductive failure. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 142(1–2):30–35.
    Li F, Zhang J, Jiang W, et al. 2017. Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environmental Geochemistry and Health, 39(4):923–934.
    Mandal P. 2017. An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3(1):17–22.
    Marrugo-Negrete J, Durango-Hernández J, Calao-Ramos C, et al. 2019. Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. Science of the Total Environment, 664:899–907.
    Morera M, Sanpera C, Crespo S, et al. 1997. Inter- and intraclutch variability in heavy metals and selenium levels in Audouin’s Gull eggs from the Ebro Delta, Spain. Archives of Environmental Contamination and Toxicology, 33(1):71–75.
    Nilsen F M, Dorsey J E, Lowers R H, et al. 2017. Evaluating mercury concentrations and body condition in American alligators (Alligator mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), Florida. Science of the Total Environment, 607:1056–1064.
    Nilsen F M, Rainwater T R, Wilkinson P M, et al. 2020. Examining maternal and environmental transfer of mercury into American alligator eggs. Ecotoxicology and Environmental Safety, 189:110057.
    Quintela F M, Lima G P, Silveira M L, et al. 2019. High arsenic and low lead concentrations in fish and reptiles from Taim wetlands, a Ramsar site in southern Brazil. Science of the Total Environment, 660:1004–1014.
    Rabaoui L, El Zrelli R, Ben Mansour M, et al. 2015. On the relationship between the diversity and structure of benthic macroinvertebrate communities and sediment enrichment with heavy metals in Gabes Gulf, Tunisia. Journal of the Marine Biological Association of the United Kingdom, 95(2):233–245.
    Scheuhammer A M. 1996. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environmental Pollution, 94(3):337–343.
    Streets D G, Hao J, Wu Y, et al. 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39(40):7789– 7806.
    Thirion F, Tellez M, Van Damme R, et al. 2022. Trace element concentrations in caudal scutes from Crocodylus moreletii and Crocodylus acutus in Belize in relation to biological variables and land use. Ecotoxicology and Environmental Safety, 231:113164.
    Trillanes C E, Pérez-Jiménez J C, Rosíles-Martínez R, et al. 2014. Metals in the caudal scutes of Morelet’s crocodile (Crocodylus moreletii) from the southern Gulf of Mexico. Bulletin of Environmental Contamination and Toxicology, 93(4):423–428.
    Tuberville T D, Scott D E, Metts B S, et al. 2016. Hepatic and renal trace element concentrations in American alligators (Alligator mississippiensis) following chronic dietary exposure to coal fly ash contaminated prey. Environmental Pollution, 214:680–689.
    Verma R, Dwivedi P. 2013. Heavy metal water pollution-A case study. Recent Research in Science and Technology, 5(5):98–99.
    Warner J K, Combrink X, Myburgh J G, et al. 2016. Blood lead concentrations in free-ranging Nile crocodiles (Crocodylus niloticus) from South Africa. Ecotoxicology, 25(5):950–958.
    戴树桂. 2006. 环境化学. 2版. 北京:高等教育出版社, 308–311.
    丁健. 2020. 环境重金属污染条件下树麻雀繁殖对策的响应研究. 兰州:兰州大学博士学位论文.
    丁由中, 王小明, 何利军, 等. 2001. 扬子鳄卵不同部位中的Cu、Zn、Cd和Pb重金属元素分布. 动物学研究, 22(3):253–256.
    国家生态环境部. 2002. 地表水环境质量标准(GB 3838-2002). [EB/OL]. [2024-09-22]. https://www.mee.gov.cn/ywgz/fgbz/bz/ bzwb/shjbh/shjzlbz/200206/W020061027509896672057.pdf.
    国家卫生和计划生育委员会. 2017. 食品中污染物限量(GB 2762-2017). [EB/OL]. [2024-09-22]. http://www.chinasugar.org. cn/d/file/2017-04-24/343851aec93175f41f2c91d367dcd417.pdf.
    江红星, 吴孝兵, 吴陆生. 2005. 野生扬子鳄栖息地水环境重金属元素含量及pH值的初步研究. 应用生态学报, 16(11):2158– 2161.
    金检生, 陈丽萍, 吴酬飞, 等. 2024. 耕地重金属污染与安全利用综述. 现代农业科技, (11):139–144, 157.
    刘新蕾, 欧阳婉约, 张彤. 2021. 大气颗粒物重金属组分的化学形态及健康效应. 环境化学, 40(4):974–989.
    马莉. 2020. 草海鸟类栖息地土壤重金属形态分布及风险评价. 贵阳:贵州师范大学硕士学位论文.
    马迎群, 时瑶, 秦延文, 等. 2014. 浑河上游(清原段)水环境中重金属时空分布及污染评价. 环境科学, 35(1):108–116.
    宁校平, 陈文清. 2015. 土壤镉污染修复技术发展现状. 四川化工, 18(6):18–21.
    潘振声, 施国跃, 丁由中. 2000. 人工养殖与野生扬子鳄卵中重金属含量分析. 上海环境科学, 19(10):489–491.
    石宗维, 张晓东, 卢志宏. 2020. 浅谈重金属在脊椎动物体内的富集与危害. 南方农业, 14(5):116, 122.
    孙四清, 严付平, 蒋宣清. 2022. 扬子鳄栖息地生态修复技术在实践中的运用. 安徽林业科技, 48(1):31–34.
    孙四清, 周永康, 晏鹏, 等. 2019. 人工繁育扬子鳄野外放归的实践探索. 安徽林业科技, 45(6):17–22.
    田贺忠, 曲益萍. 2009. 2005年中国燃煤大气砷排放清单. 环境科学, 30(4):956–962.
    魏复盛. 1990. 中国土壤背景值. 北京:中国环境科学出版杜, 329–381.
    吴陆生, 江红星, 吴孝兵, 等. 2003. 野生扬子鳄栖息地土壤金属元素含量初步研究. 安徽师范大学学报:自然科学版, 26(3):259–263.
    吴荣, 周永康. 2015. 安徽扬子鳄国家级自然保护区现状分析. 安徽林业科技, 41(5):37–41.
    吴孝兵, 顾长明, 朱家龙, 等. 2008. 安徽扬子鳄国家级自然保护区综合研究. 合肥:合肥工业大学出版社, 64–65.
    徐烨. 2016. 白令海与楚科奇海陆架区底栖食物链中金属的来源分析及传递过程. 厦门:厦门大学硕士学位论文.
    颜忠诚, 陈永林. 1998. 动物的生境选择. 生态学杂志, 17(2):43–49.
    俞慎, 历红波. 2010. 沉积物再悬浮-重金属释放机制研究进展. 生态环境学报, 19(7):1724–1731.
    郑颖娟. 2016. 秦岭大熊猫栖息地重金属暴露风险评价及来源解析. 西安:中国科学院大学(中国科学院地球环境研究所)博士学位论文.
    ① 西藏自治区高原生物研究所 拉萨 850001;② 西藏大学 拉萨 850000;③ 中国科学院动物研究所 北京 100101;④ 西藏自然科学博物馆 拉萨 850000;⑤ 北京林业大学 北京 100083
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

党雅婷,沈悦悦,章松,蒋宣清,晏鹏.2025.扬子鳄栖息地重金属含量及生物积累.动物学杂志,60(1):80-92.

复制
文章指标
  • 点击次数:58
  • 下载次数: 58
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-01-08
  • 在线发布日期: 2025-03-04