麝肠道微生物菌群组成及功能的研究进展
作者:
作者单位:

四川省药品检验研究院,四川养麝研究所 成都 611845

作者简介:

代秦丹,女,硕士研究生,研究方向:反刍动物营养;E-mail:279168893@qq.com。

基金项目:

四川省科研院所科技成果转化项目(No. 2024ZHYS0013),基础科研业务项目(No. 2024JDKY0030);


Research Progress on Composition and Function of Intestinal Microflora of Musk Deer Moschus spp.
Author:
Affiliation:

Sichuan Institute for Drug Control, Sichuan Institute of Musk Deer Breeding, Chengdu 611845, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    麝(Moschus spp.)属国家一级重点保护野生动物,其人工养殖历史已有60余年,但由于饲养标准和营养需求不完善以及患病率和死亡率高等原因,麝养殖技术发展缓慢。针对麝养殖过程中的问题,前人做了许多工作,但因麝易受环境影响产生应激或病理性反应,导致有代表性的试验数据和生物样本不易获取,相关研究存在一定局限性。随着分子生物学技术发展,逐渐发现肠道微生物菌群对宿主健康至关重要,并在宿主免疫防控、营养调控及适应进化等方面起关键作用。探索麝的肠道微生物菌群组成及功能对丰富麝相关研究及维持麝健康有重要意义。因此本文综述了麝以细菌为主的肠道微生物菌群组成、功能及影响因素,以期为改进麝人工养殖过程中的疾病防控、饲养管理和营养调控提供科学的参考依据。

    Abstract:

    Musk Deer Moschus spp. is a wild animal under first class protection in China, and its artificial culture history has been more than 60 years. However, cultivation technology developed slowly due to inadequate feeding standards and nutritional requirements, as well as high morbidity and mortality. Researchers worked to solve these problems, but because Musk Deer is susceptible to environmental stress or pathological reactions, it is difficult to obtain representative test data and biological samples, and relevant studies have certain limitations. With the development of molecular biology technology, it is gradually found that intestinal microbiota is crucial to host health and plays a key role in host immune prevention and control, nutritional regulation and adaptive evolution. It is important to study the intestinal microbes to enrich relevant research and maintain the health of Musk Deer. Therefore, the composition, function and influencing factors of the bacterial-dominated intestinal microflora of Musk Deer were reviewed in this article, to provide a scientific reference for improving disease control and prevention, feeding management and nutritional regulation in the process of artificial Musk Deer farming.

    参考文献
    Abenavoli L, Scarpellini E, Colica C, et al. 2019. Gut microbiota and obesity: a role for probiotics. Nutrients, 11(11): 2690.
    Antwis R E, Lea J M D, Unwin B, et al. 2018. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. Microbiome, 6(1): 207.
    Arshad M A, Hassan F, Rehman M S, et al. 2021. Gut microbiome colonization and development in neonatal ruminants: strategies, prospects, and opportunities. Animal Nutrition, 7(3): 883–895.
    Bo X, Chen J, Mu J, et al. 2024. Quercetin promotes the secretion of musk by regulating the hormone level and microbial structure of forest musk Deer. Integrative Zoology, 19(4): 596–611.
    Cholewińska P, Czy? K, Nowakowski P, et al. 2020. The microbiome of the digestive system of ruminants-a review. Animal Health Research Reviews, 21(1): 3–14.
    Chong R, Grueber C E, Fox S, et al. 2019. Looking like the locals-gut microbiome changes post-release in an endangered species. Animal Microbiome, 1(1): 8.
    Dai Q, Ma J, Cao G, et al. 2021. Comparative study of growth performance, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks raised by stall-feeding. AMB Express, 11(1): 98.
    Deng L, Chen S, Meng W, et al. 2022. Changes in gut microbiota composition associated with the presence of enteric protist Blastocystis in captive forest musk Deer (Moschus berezovskii). Microbiology Spectrum, 10(4): e0226921.
    Fu Y, Lyu J, Wang S. 2023. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Frontiers in Immunology, 14: 1277102.
    Gao Y, Duszynski D W, Yuan F, et al. 2021. Coccidian parasites in the endangered Forest Musk Deer (Moschus berezovskii) in China, with the description of six new species of Eimeria (Apicomplexa: Eimeriidae). Parasite, 28: 70.
    Gong R, Song S, Ai Y, et al. 2023. Exploring the growing forest musk deer (Moschus berezovskii) dietary protein requirement based on gut microbiome. Frontiers in Microbiology, 14: 1124163.
    Gu M, Samuelson D R, de la Rua N M, et al. 2022. Host innate and adaptive immunity shapes the gut microbiota biogeography. Microbiology and Immunology, 66(6): 330–341.
    Guo P, Zhang K, Ma X, et al. 2020. Clostridium species as probiotics: potentials and challenges. Journal of Animal Science and Biotechnology, 11: 24.
    Han X, Yang Y, Yan H, et al. 2015. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing. PLoS One, 10(2): e0117811.
    Hu X L, Liu G, Shafer A B A, et al. 2017. Comparative analysis of the gut microbial communities in forest and alpine musk deer using high-throughput sequencing. Frontiers in Microbiology, 8: 572.
    Hu X, Liu G, Li Y, et al. 2018. High-throughput analysis reveals seasonal variation of the gut microbiota composition within forest musk Deer (Moschus berezovskii). Frontiers in Microbiology, 9: 1674.
    Jawhara S. 2022. How gut bacterial dysbiosis can promote Candida albicans overgrowth during colonic inflammation. Microorganisms, 10(5): 1014.
    Jiang F, Gao H, Qin W, et al. 2021. Marked seasonal variation in structure and function of gut microbiota in forest and alpine musk Deer. Frontiers in Microbiology, 12: 699797.
    Jiang F, Song P, Liu D, et al. 2023. Marked variations in gut microbial diversity, functions, and disease risk between wild and captive alpine musk Deer. Applied Microbiology and Biotechnology, 107(17): 5517–5529.
    Jiang F, Song P, Wang H, et al. 2022a. Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk Deer. Applied Microbiology and Biotechnology, 106(3): 1325–1339.
    Jiang F, Zhang J, Gao H, et al. 2020. Musk Deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Science of the Total Environment, 704: 135335.
    Jiang Y, Han X, Li M, et al. 2022b. Changes in the gut microbiota of forest musk Deer (Moschus berezovskii) during ex situ conservation. Frontiers in Microbiology, 13: 969593.
    Jie H, Xu Z X, Su Y, et al. 2019. The transcriptome analysis of males musk gland in Moschus berezovskii (Artiodactyla: Moschidae). The European Zoological Journal, 86(1): 402–412.
    Kapitan M, Niemiec M J, Steimle A, et al. 2019. Fungi as part of the microbiota and interactions with intestinal bacteria. Current Topics in Microbiology and Immunology, 422: 265–301.
    Lan W, Yang C. 2019. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Science of the Total Environment, 654: 1270–1283.
    Li J, Luo W, Zhu Y, et al. 2021. Social behavior of musk Deer during the mating season potentially influences the diversity of their gut microbiome. PeerJ, 9: e10860.
    Li Y, Hu X, Yang S, et al. 2017. Comparative analysis of the gut microbiota composition between captive and wild forest musk Deer. Frontiers in Microbiology, 8: 1705.
    Li Y, Hu X, Yang S, et al. 2018. Comparison between the fecal bacterial microbiota of healthy and diarrheic captive musk Deer. Frontiers in Microbiology, 9: 300.
    Li Y, Shi M, Zhang B, et al. 2022. Effects of different weaning times on the stress response and the intestinal microbiota composition of female forest musk Deer (Moschus berezovskii) and their fawns. PLoS One, 17(10): e0276542.
    Li Y, Shi M, Zhang T, et al. 2020. Dynamic changes in intestinal microbiota in young forest musk Deer during weaning. PeerJ, 8: e8923.
    Li Y, Zhang T, Shi M, et al. 2021. Characterization of intestinal microbiota and fecal cortisol, T3, and IgA in forest musk Deer (Moschus berezovskii) from birth to weaning. Integrative Zoology, 16(3): 300–312.
    Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Medicine, 8(1): 51.
    Mitchell A, Jones C K. 2019. PSI-34 the impact of varying protein sources on feedlot goat fecal microbiome. Journal of Animal Science, 97(Supplement_3): 256.
    Nian F, Wu L, Xia Q, et al. 2023. Akkermansia muciniphila and Bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota. Journal of Clinical and Translational Hepatology, 11(4): 763–776.
    Parker B J, Wearsch P A, Veloo A C M, et al. 2020. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in Immunology, 11: 906.
    Shen Z H, Zhu C X, Quan Y S, et al. 2018. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World Journal of Gastroenterology, 24(1): 5–14.
    Stojanov S, Berlec A, ?trukelj B. 2020. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 8(11): 1715.
    Su R, Erdenedalai M, Dalai M, et al. 2020. Seasonal variation in gut microbiota composition: comparative analysis of Siberian musk Deer (Moschus moschiferus) and forest musk deer (Moschus berezovskii). Research Square. 8: 1–24.
    Sun Y, Sun Y, Shi Z, et al. 2020. Gut microbiota of wild and captive alpine musk deer (Moschus chrysogaster). Frontiers in Microbiology, 10: 3156.
    Tan Z, Dong W, Ding Y, et al. 2019. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS One, 14(7): e0219868.
    Tang T T, Li J, Yang Z, et al. 2019. Effect of straw on microbial community composition and degradation efficiency of polycyclic aromatic hydrocarbons in sludge digester. International Journal of Environmental Science and Technology, 16(12): 7973–7986.
    Waters J L, Ley R E. 2019. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 17(1): 83.
    West A G, Waite D W, Deines P, et al. 2019. The microbiome in threatened species conservation. Biological Conservation, 229: 85–98.
    Xu L, Xiang M, Zhu W, et al. 2020. The behavior of amphibians shapes their symbiotic microbiomes. mSystems, 5(4): e00626–20.
    Yan M, Yan Q G, Yang G Y. 2016. The mass diseases of captive musk Deer. Journal of Economic Animal, 20(2): 112–117.
    Yang C, Huang W, Sun Y, et al. 2021. Effect of probiotics on diversity and function of gut microbiota in Moschus berezovskii. Archives of Microbiology, 203(6): 3305–3315.
    Yao H, Mo Q, Wu H, et al. 2023. How do living conditions affect the gut microbiota of endangered Père David’s Deer (Elaphurus davidianus)? Initial findings from the warm temperate zone. PeerJ, 11: e14897.
    Yelika S B, Tumati A, Denoya P. 2021. Intestinal aspergillosis: systematic review on patterns of clinical presentation and management. Surgical Infections, 22(3): 326–333.
    Yin X, Ji S, Duan C, et al. 2023. The succession of fecal bacterial community and its correlation with the changes of serum immune indicators in lambs from birth to 4 months. Journal of Integrative Agriculture, 22(2): 537–550.
    Zhang B, Shi M, Xu S, et al. 2023b. Analysis on changes and influencing factors of the intestinal microbiota of alpine musk Deer between the place of origin and migration. Animals, 13(24): 3791.
    Zhang Z, Ding M, Sun Y, et al. 2023a. Different living environments drive deterministic microbial community assemblages in the gut of Alpine musk Deer (Moschus chrysogaster). Frontiers in Microbiology, 13: 1108405.
    Zhao G, Ma T, Tang W, et al. 2019b. Gut microbiome of Chinese forest musk Deer examined across gender and age. BioMed Research International, 2019: 9291216.
    Zhao J, Zhang X, Liu H, et al. 2019a. Dietary protein and gut microbiota composition and function. Current Protein & Peptide Science, 20(2): 145–154.
    Zhao W, Ren Z, Luo Y, et al. 2021. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk Deer. Genes & Genomics, 43(1): 43–53.
    丁建红, 熊小倩, 吴家慧, 等. 2022. 林麝应激生理状态与消化道球虫感染程度关系. 安徽农业大学学报, 49(1): 81–86.
    李思瑶, 侯斌, 玛丽雅其其格, 等. 2024. 肠道寄生虫与肠道微生物相互作用研究进展. 中国畜牧兽医, 51(1): 330–337.
    李依蒙. 2021. 林麝肠道菌群组成及动态影响因子研究. 北京: 北京林业大学博士学位论文.
    刘旭. 2020. 林麝复合微生态制剂对育成林麝几种免疫相关因子及肠道菌群的影响. 雅安: 四川农业大学硕士学位论文.
    苏日娜. 2022. 原麝全基因组学及肠道菌群多样性和基因功能分析研究. 呼和浩特: 内蒙古农业大学博士学位论文.
    苏日娜, Erdenedalai M, 孟根达来, 等. 2022. 原麝和林麝冬夏两季粪便真菌菌群多样性. 菌物学报, 41(1): 17–29.
    王应祥. 2003. 中国哺乳动物种和亚种分类名录与分布大全. 北京: 中国林业出版社, 49–50.
    徐谊英. 2015. 大熊猫和林麝粪便中细菌和古菌结构组成研究. 雅安: 四川农业大学硕士学位论文.
    赵贵军, 竭航, 朱吉彬, 等. 2019. 圈养不同性别林麝粪便菌群多样性研究. 西南农业学报, 32(7): 1652–1658, 1687.
    郑程莉, 蔡永华, 王建明, 等. 2020. 四川省林麝养殖现状调查报告. 黑龙江畜牧兽医, (3): 136–139.
    周美丽, 王立志, 闫天海, 等. 2016. 林麝粪便细菌多样性研究. 中国农业大学学报, 21(2): 100–106.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

代秦丹,陈凤,鄢惠,蒋桂梅,杨柳青,石鑫,刘瑜.2025.麝肠道微生物菌群组成及功能的研究进展.动物学杂志,60(1):145-154.

复制
文章指标
  • 点击次数:59
  • 下载次数: 37
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-05
  • 在线发布日期: 2025-03-04