入侵种小管福寿螺对本土物种 梨形环棱螺的生态挤压作用
作者:

Ecological Squeezing Effect of the Invasive Species Pomacea canaliculata on the Indigenous Species Bellamya purificata
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在世界范围内,物种入侵正成为一个影响经济发展、公众健康的重大生态事件。为了探究入侵物种小管福寿螺(Pomacea canaliculata)对本土近生态位物种的生态挤压作用,选择了梨形环棱螺(Bellamya purificata)作为受试动物,设置直接生态竞争实验和间接分泌物胁迫实验两类实验。直接生态竞争实验中两种螺直接竞争生存资源,而间接分泌物胁迫实验中则观测两种受试螺分泌物对彼此与自身种群的影响。为了模拟野外不同水体的竞争情况,设置了两种密度,即每组共计6只受试螺(低密度组)及每组共计12只受试螺(高密度组),在两种密度下设两种螺不同比例的个体组合。结果显示,两类实验中,小管福寿螺的体重相对变化与生存率都优于梨形环棱螺。直接竞争实验小管福寿螺体重相对变化率显著优于梨形环棱螺(P < 0.05),但二者生存率无显著差异;低密度组中,福寿螺与梨形环棱螺的体重相对变化及生存率均无显著差异,而高密度组中,当梨形环棱螺个体数极多时(8只),其体重相对变化率会显著差于小管福寿螺(P < 0.05);当梨形环棱螺个体数少时(4只),其体重相对变化率与小管福寿螺无明显差异,但生存率会显著低于小管福寿螺(P < 0.05)。间接分泌物干扰实验中,小管福寿螺的体重相对变化率极显著优于梨形环棱螺(P < 0.01),且其生存率高于梨形环棱螺;在低密度组中,高比例(4只)的小管福寿螺生存率显著高于高比例(4只)的梨形环棱螺(P < 0.05);而在高密度组中,高比例(8只)的梨形环棱螺在28 d内全部死亡,由于对照组中即使是高密度的梨形环棱螺也拥有高生存率,说明这种效应不是梨形环棱螺本身所导致的,而是小管福寿螺的间接分泌物胁迫导致了梨形环棱螺的大量死亡。以上结果充分表明,小管福寿螺的间接分泌物干扰效应比直接生态挤压作用具有更严重的生态威胁性,且小管福寿螺的种内竞争调节能力优于梨形环棱螺,这可能是小管福寿螺作为入侵物种的一种有效生活史策略。

    Abstract:

    Species invasion is becoming a major ecological event affecting economic development and public health in the world. In order to explore the ecological squeeze effect of the malignant aquatic invasive species Pomacea canaliculata to the native near-niche species, the Bellamya purificata was selected as the test animals. Two sets of experiments were conducted. In the direct ecological competition experiment, P. canaliculata directly competed with B. purificata for the survival resources, while in the indirect endocrine interference experiment, the effects of secretions of the two kinds of snails on each other were observed. In order to simulate the competition of different water bodies in the field, two densities of the two kinds of snails were set, namely, 6 snails in each group (low density group) and 12 snails in each group (high density group). Different proportion of individual combinations of the two kinds of snails were set under two densities. In the low density group, the ratio of the number of P. canaliculata to B. purificata is 2︰4, 3︰3, 4︰2, while in the high density group, the ratio of the number of P. canaliculata to B. purificata is 4︰8, 6︰6, 8︰4. The data was analyzed using Excel and Spss17.0, and the significance test was analyzed using T-test. The results showed that no matter which group of experiments, the relative change rate of weight and the survival rate of P. canaliculata were better than those of B. purificata (Fig. 2, Fig. 5). In the direct competition experiment, the relative change rate of weight of P. canaliculata was significantly better than that of B. purificata (P < 0.05), but there was no significant difference in the survival rate (Fig. 3). In the low-density group, there was no significant difference in the relative change rate of weight and survival rate of the two kinds of snails; while in the high-density group, the relative change rate of weight of B. purificata was significantly worse than that of P. canaliculata (P < 0.05) when the number of B. purificata was extremely large (8), but the relative change rate of weight of B. purificata was not significantly different from that of P. canaliculata, but the survival rate of B. purificata would be significantly lower than that of P. canaliculata (P < 0.05) when the number of B. purificata was small (4) (Fig. 3). In the indirect secretion interference experiment, the relative change rate of weight of P. canaliculata was significantly better than that of B. purificata (P < 0.01), and its survival rate was higher than that of B. purificata (Fig. 4). In the low-density group, the survival rate of P. canaliculata of the high number (4) was significantly higher than that of B. purificata of the high number (4) (P < 0.05); while in the high-density group, B. purificata of the high number (8) all died within 28 days. Since the survival rate of B. purificata was high even in the high-density in the control group, which indicated that this effect was not caused by B. purificata itself, but caused by the indirect secretion stress of P. canaliculata. This life strategy of P. canaliculata caused a large number of deaths of B. purificata (Fig. 5). The above results fully indicated that the indirect secretion interference effect of P. canaliculata had a more serious ecological threat than the direct ecological squeeze effect, and the regulation ability of intraspecific competition of P. canaliculata was better than that of B. purificata, which may be an effective life history strategy for P. canaliculata as an invasive species.

    参考文献
    Carlsson N O L, Bmmark C. 2006. Size-dependent effects of an invasive herbivorous snail (Pomacea canaliculata) on macrophytes and periphyton in Asian wetlands. Freshwater Biology, 51(4): 695–704. Carlsson N O L, Br?nmark C, Hansson L A. 2004. Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology, 85(6): 1575–1580. Chaichana R, Sumpan T. 2014. The potential ecological impact of the exotic snail Pomacea canaliculata on the Thai native snail Pila scutata. Scienceasia, 40(1): 11–15. Chaturvedi M L, Agarwal R A. 1983. Ammonia excretion in snails Viviparus bengalensis (Lamarck) and Pila globosa (Swaison) during active and dormant periods. Internationale Revueder gesamten Hydrobiologie und Hydrographie, 68: 599–602. Crooks J A. 2002. Characterizing ecosystem -level consequences of biological invasion: the role of ecosystem engineers. Oikos, 97(2): 153–166. Cui B S, He Q, An Y, et al. 2011. Spartina alterniflora invasions and effects on crab communities in a western Pacific estuary. Ecological Engineering, 37(11): 1920–1924. Eriko U, Yoichi Y. 2015. Antipredator behaviour in response to single or combined predator cues in the apple snail Pomacea canaliculata. Journal of Molluscan Studies, 81(1): 51–57. Fang L, Wong P K, Lin L I, et al. 2010. Impact of invasive apple snails in Hong Kong on wetland macrophytes, nutrients, phytoplankton and filamentous algae. Freshwater Biology, 55(6): 1191–1204. Hulvey K B, Zavaleta E S. 2012. Abundance declines of a native for Forb have nonlinear impacts on grassland invasion resistance. Ecology, 93(2): 378–388. Karraker N,Karraker, Dudgeon D. 2014. Invasive apple snails (Pomacea canaliculata) are predators of amphibians in South China. Biological Invasions, 16(9): 1785–1789. Kimbro D, Cheng B S, Grosholz E D. 2013. Biotic resistance in marine environments. Ecology Letter, 16(6): 821–833. Kwong K L, Chan R K Y, Qiu J W. 2009. The potential of the invasive snail Pomacea canaliculata as a predator of various life-stages of five species of freshwater snails. Malacologia, 51(2): 343–356. Liu Q, Zhao L L, Yang S, et al. 2017. Regeneration of excised shell by the invasive apple snail Pomacea canaliculata. Marine & Freshwater Behaviour & Physiology, 50(1/2): 1–13. Maldonado M A, Martín P R. 2019. Dealing with a hyper-successful neighbor: effects of the invasive apple snail Pomacea canaliculata on exotic and native snails in South America. Current Zoology, 65(3): 225–235. Matsukura K, Izumi Y, Yoshida K, et al. 2016. Cold tolerance of invasive freshwater snails, Pomacea canaliculata, P. maculata, and their hybrids helps explain their different distributions. Freshwater Biology, 61(1): 80–87. Parras A, Casadio S. 2006. The oyster Crassostrea? hatcheri (Ortmann, 1897), a physical ecosystem engineer from the upper oligocene -lower miocene of Patagonia, Southern Argentina. Palaios, 21(2): 168–186. Rice E L. 1984. Allelopathy. New York: Academic Press. Schwinning S, Kelly C K. 2013. Plant competition, temporal niches and implications for productivity and adaptability to climate change in water-limited environments. Functional Ecology, 27(4): 886–897. Simberloff D, Martin J L, Genovesi P, et al. 2013. Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28(1)): 58–66. Wang J, Lu X, Zhang J, et al. 2020. Regulating soil bacterial diversity, community structure and enzyme activity using residues from golden apple snails. Scientific Reports, 10(1): 16302. Wright J T, Gribben P E, Byers J E. 2012. Invasive ecosystem engineer selects for different phenotypes of an associated native species. Ecology, 93(6): 1262–1268. Zavaleta E S, Kettley L S. 2006. Ecosystem change along a woody invasion chronosequence in a California grassland. Journal of Arid Environments, 66(2): 290–306 . Zhang W X, Hendrix P F, Snyder B A, et al. 2010. Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology, 91(7)): 2070–2079. 白秀玲, 谷孝鸿, 张钰. 2006. 太湖螺类的实验生态学研究—以环棱螺为例. 湖泊科学, 18(6): 649–654. 蔡汉雄, 陈日中. 1990. 新的有害生物—大瓶螺. 广东农业科学, (5): 36–38. 段晓姣, 谢从新, 吕元蛟, 等. 2013. 梨形环棱螺的食性及其在生态沟渠中的净水作用. 渔业现代化, 40(2): 17–21. 房苗, 徐猛, 罗渡, 等. 2016. 入侵种福寿螺的养殖液对水环境及本地种铜锈环棱螺的影响. 生态学杂志, 35(7): 1879–1888. 傅先源, 王洪全, 滕洲. 1998. 饵料种类及水质对大瓶螺仔螺生存影响的初步研究. 水产养殖, (4): 15–17. 高增祥, 季荣. 2003. 外来种入侵的过程、机理和预测. 生态学报, 23(3): 559–570. 郭靖, 徐武兵, 章家恩, 等. 2014b. 雌雄福寿螺耐寒能力的差异. 应用生态学报, 25(6): 1791–1798. 郭靖, 章家恩. 2014a. 福寿螺入侵机制的研究进展. 生态学杂志, 33(3): 806–815. 赖朝晖, 陈宏明, 蔡灿, 等. 2009. 福寿螺危害与部分生物学的调查分析. 上海农业科技, (2): 128–128. 李大林. 2014. 我国每年因外来生物入侵经济损失超两千亿元. 广西质量监督导报, (11): 30. 罗明珠, 章家恩, 胡九龙, 等. 2015. 福寿螺和田螺消化酶活性比较. 生态学报, 35(11): 3580–3587. 潘冬丽, 张家辉, 龙俊, 等. 2014. 福寿螺对水体环境与水体微生物的影响. 中国生态农业学报, 22(1): 58–62. 王元川, 侯建军, 陈亚琼, 等. 2012. 五氯酚钠对梨形环棱螺的毒理效应研究. 水生态学杂志, 33(4): 118–123. 张海涛, 罗渡, 牟希东, 等. 2016. 应用多个生态位模型预测福寿螺在中国的潜在适生区. 应用生态学报, 27(4): 1277–1284. 张清顺, 侯建军, 刘香江, 等. 2009. 铜对梨形环棱螺抗氧化酶活性和金属硫蛋白含量的影响. 水生生物学报, 33(4): 717–725. 章家恩, 赵本良, 罗明珠, 等. 2010. 外来生物福寿螺入侵的生态风险及其评价探讨. 佛山科学技术学院学报: 自然科学版, 28(5): 1–6. 赵彩云, 白加德, 柳晓燕, 等. 2015. 互花米草入侵对广西北海光滩大型底栖动物群落的影响. 环境科学研究, 28(3): 377–383. 赵峰, 谢从新, 张念, 等. 2014. 不同密度梨形环棱螺对养殖池塘水质及沉积物氮、磷释放的影响. 水生态学杂志, 35(2): 32–38.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘洺源,张叶军,陈乃菲,马浩楠,邹伟.2021.入侵种小管福寿螺对本土物种 梨形环棱螺的生态挤压作用.动物学杂志,56(5):663-673.

复制
文章指标
  • 点击次数:724
  • 下载次数: 1439
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-12-15
  • 最后修改日期:2021-07-01
  • 录用日期:2021-06-29
  • 在线发布日期: 2021-10-09
  • 出版日期: 2021-10-20