甘肃盐池湾黑颈鹤亚成体夏季生境选择
作者:
基金项目:

国家自然科学基金项目(No. 31770573)


Habitat Selection of Subadults of Black-necked Crane in Summer in Yanchiwan, Gansu Province, China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    开展对亚成体的研究,可以更加全面了解一个物种,进而更有效地开展保护工作。甘肃盐池湾国家级自然保护区是黑颈鹤(Grus nigricollis)成体的重要繁殖地和亚成体的重要栖息地之一。为研究甘肃盐池湾黑颈鹤亚成体生境选择,于2020年7月初至8月中旬在盐池湾党河湿地展开调查,并依据Johnson对生境选择空间尺度的划分,对亚成体活动区内各类型生境和觅食微生境的生境选择进行了研究。通过遥感影像解译和卫星跟踪分别获得各栖息地类型面积以及黑颈鹤的活动位点,利用核密度分析法估计活动区面积并利用Manly研究中的设计Ⅲ来研究活动区内各类型生境选择;通过选取利用样方和对照样方,使用χ2检验、独立样本t检验和Mann-Whitney U检验,对比检验样方数据,进行微生境选择的研究。结果表明,活动区内各类型生境中亚成体选择河流,拒绝戈壁和沼泽化草甸,对沼泽既不选择也不拒绝,而成体选择湖泊,没有利用河流,同时拒绝戈壁、山脉、沼泽化草甸和盐化草甸,对沼泽既不选择也不拒绝;觅食微生境选择中,亚成体选择平均植被盖度为57.07% ± 4.53%,基质类型为泥炭,基质硬度为中,主要植被黑褐苔草(Carex atrofusca)的微生境栖息,相比成体,亚成体选择的生境基质更硬,距道路距离更近,距房屋、河流、山脉和湖泊距离更远。亚成体的栖息地选择主要受到生境质量、生境资源有限性以及成体选择等因素的影响。在这些因素的影响下,亚成体与成体产生了生态位分离,并在栖息地选择上出现了分化。这种分化对亚成体的生存和成体的繁殖都有益,可以避免种内无效的冲突和竞争,有利于亚成体和成体的适合度增加。保护黑颈鹤的栖息环境需同时考虑到亚成体的选择和生存。

    Abstract:

    [Objectives] Research on subadults can provide a more comprehensive understanding of a species and a more effective protection work. To adequately protect the Black-necked Crane (Grus nigricollis), a threatened wetland bird on the Tibetan Plateau, according to Johnson's research, we conducted a survey in the Danghe wetland in Yanchiwan (Fig. 1) from early July to mid-August 2020 to study the home range and microhabitat scale habitat selection of subadult Black-necked Cranes. [Methods] The kernel density estimation was used to estimate the home range, then home range scale selection was studied using Manly selection ratio design III, and the area of each habitat type and the locations of Black-necked Cranes were obtained using remote sensing image interpretation and satellite tracking, respectively. The microhabitat scale selection was performed by selecting utilization and control samples and then comparing the data of samples using the one sample Kolmogorov-Smirnov test, χ2 test, independent samples t-test and Mann-Whitney U-test. [Results] In the third-order selection, river (?i = 5.12, CI was 2.92﹣7.32) was preferred, lake (?i = 0.00) was not being used, gobi (?i = 0.16, CI was 0.00﹣0.35) and swamp meadow (?i = 0.64, CI was 0.51﹣0.78) were rejected, and swamp (?i = 0.83, CI was 0.58﹣1.09) was neither selected nor rejected by subadults (Table 2), and the subadults are wandering around the river (Fig. 2). In contrast, adults selected lake (?i = 3.11, CI was 1.80﹣4.43) without using river (?i = 0.00), while adults rejected gobi (?i = 0.05, CI was 0.03﹣0.06), mountain (?i = 0.07, CI was 0.01﹣0.14), swamp meadow (?i = 0.21, CI was 0.10﹣0.32) and salinization meadow (?i = 0.18, CI was 0.01﹣0.35), and neither selected nor rejected swamp (?i = 1.22, CI was 0.92﹣1.53) (Table 2). In the microhabitat scale selection, microhabitats with an average vegetation cover of 57.07% ± 4.53% (Table 3), matrix type of peat (χ2 = 10.248, df = 1, P < 0.05), intermediate matrix (χ2 = 22.483, df = 2, P < 0.05), and dominant vegetation (χ2 = 19.419, df = 5, P < 0.05) of Carex atrofusca were selected by subadults. Harder matrix (χ2 = 9.875, df = 2, P < 0.05), closer to road and further from house, river, mountain and lake were the habitats selected by subadults compared to adults (Table 4). [Conclusion] The habitat selection of subadults is mainly affected by factors such as habitat quality, habitat resources limitation and habitat selection of adults. Under the influence of these factors, the separation of ecological niche and the differentiation of habitat selection occurred between subadults and adults. This differentiation is beneficial to both subadult survival and adult reproduction, avoiding ineffective intraspecific conflict and competition, and facilitating increased fitness of subadults and adults. Habitat protection of Black-necked Cranes needs to consider the habitat selection of subadults and their survival.

    参考文献
    Alexander G, Michael M, Mamikon G, et al. 2012. Movements and habitat use by immature Cinereous Vultures (Aegypius monachus) from the Caucasus. Bird Study, 59(4): 449–462. BirdLife International. 2020. Grus nigricollis. The IUCN Red List of Threatened Species 2020: e.T22692162A180030167. [DB/OL]. [2021-11-04]. https://dx.doi.org/10.2305/IUCN.UK.2020-3. RLTS. T22692162A180030167.en. Bishop M A. 1996. Black-necked Crane (Grus nigricollis) // Meine C D, Archibald G W. The Cranes: Status Survey and Conservation Action Plan. Gland, Switzerland: IUCN, 184. Block W M, Brennan L A. 1993. The habitat concept in ornithology theory and application // Dennis M. Power. Current Ornithology, Volume 11, Plenum Press, New York. 35–91. Bock A, Naef-Daenzer B, Keil H, et al. 2013. Roost site selection by Little Owls Athene noctua in relation to environmental conditions and life-history stages. Ibis, 155(4): 847–856. Bradter U, Gombobaatar S, Uuganbayar C, et al. 2005. Reproductive performance and nest-site selection of White-naped Cranes Grus vipio in the Ulz river valley, north-eastern Mongolia. Bird Conservation International. 15(4): 313–326. Calenge C. 2006. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling, 197(3/4): 516–519. Calenge C. 2020. Package ‘adehabitatHS’: Analysis of Habitat Selection by Animals. R package version 0.3.15. [R/OL]. [2021-11-04] https://cran.r-project.org/web/packages/adehabitatHS/adehabitatHS. pdf. Crawford J A, Frost K J, Quakenbush L T, et al. 2019. Seasonal and diel differences in dive and haul-out behavior of adult and subadult ringed seals (Pusa hispida) in the Bering and Chukchi seas. Polar Biology, 42(1): 65–80. Dahle B, St?en O G, Swenson J E. 2006. Factors influencing home-range size in subadult brown bears. Journal of Mammalogy, 87(5): 859–865. Franks V R, Ewen J G, McCready M, et al. 2020. Foraging behaviour alters with social environment in a juvenile songbird. Proceedings of the Royal Society B, 287(1939): 20201878. Irby H D, Blankenship L H. 1966. Breeding behavior of immature Mourning Doves. Journal of Wildlife Management, 30(3): 598–604. Johnson D. 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61(1): 65–71. Liu W, Jin Y, Wu Y, et al. 2020. Home Range and Habitat Use of Breeding Black-Necked Cranes. Animals, 10(11): 1975. Manly B F, Mcdonald L L, Thomas D L, et al. 2002. Resource selection by animals: statistical design and analysis for field studies. Journal of Animal Ecology, 63(3): 351–351. Pearse A T, Metzger K L, Brandt D A, et al. 2020. Heterogeneity in migration strategies of Whooping Cranes. The Condor, 122(1): duz056. Raybuck D W, Larkin J L, Stoleson S H, et al. 2020. Radio-tracking reveals insight into survival and dynamic habitat selection of fledgling Cerulean Warblers. The Condor, 122(1): duz063. Steenhof K, Kochert M N, Doremus J H. 1983. Nesting of subadult Golden Eagles in Southwestern Idaho. The Auk: Ornithological Advances, 100(3): 743–747. Vignali S, L?rcher F, Hegglin D, et al. 2021. Modelling the habitat selection of the bearded vulture to predict areas of potential conflict with wind energy development in the Swiss Alps. Global Ecology and Conservation, 25: e01405. Wu H, Zha K, Zhang M, et al. 2009. Nest site selection by Black-necked Crane Grus nigricollis in the Ruoergai Wetland, China. Bird Conservation International, 19(3): 277–286. Weldon K B, Fanson K V, Smith C L, et al. 2016. Effects of isolation on stress responses to novel stimuli in subadult chickens (Gallus gallus). Ethology, 122(10): 818–827. Wolfson D W, Fieberg J R, Andersen D E. 2019. Juvenile Sandhill Cranes exhibit wider ranging and more exploratory movements than adults during the breeding season. Ibis, 162(2): 556–562. Wang Z, Guo Y, Dou Z, et al. 2020. Autumn migration route and stopover sites of Black-necked Crane breeding in Yanchiwan Nature Reserve, China. Waterbirds, 43(1): 93–99. Wohner P J, Foss C R, Cooper R J. 2020. Rusty Blackbird habitat selection and survivorship during nesting and post-fledging. Diversity, 12(6): 221. Zhang L, An B, Shu M, et al. 2017. Nest-site selection, reproductive ecology and shifts within core-use areas of Black-necked Cranes at the northern limit of the Tibetan Plateau. PeerJ, 5: e2939. 程雅畅. 2015. 基于GPS遥测的江西鄱阳湖越冬白枕鹤(Grus vipio)活动区和栖息地选择研究. 北京: 北京林业大学硕士学位论文, 1–47. 窦亮, 李华, 李凤山, 等. 2013. 四川若尔盖湿地国家级自然保护区繁殖期黑颈鹤调查. 四川动物, 32(5): 770–773. 邓书斌. 2014. ENVI 遥感图像处理方法. 北京: 高等教育出版社, 140–142. 蒋爱伍, 周放, 覃玥, 等. 2012. 中国大陆鸟类栖息地选择研究十年. 生态学报, 32(18): 5918–5923. 邝粉良, 仓决卓玛, 李建川, 等. 2010. 藏北繁殖黑颈鹤的巢址特征及觅食地选择. 东北林业大学学报, 38(11): 89–92. 李凤山. 1999. 贵州草海越冬黑颈鹤觅食栖息地选择的初步研究. 生物多样性, 7(4): 257–262. 李杰, 胡金明, 罗怀秀, 等. 2017. 人类活动对纳帕海湿地黑颈鹤越冬生境的干扰强度与格局. 湿地科学, 15(3): 343–350. 李伟, 周伟, 刘钊, 等. 2010. 云南大中山黑颈长尾雉栖息地选择周年变化. 动物学研究, 31(5): 499–508. 刘迺发, 张惠昌, 窦志刚. 2010. 甘肃盐池湾国家级自然保护区综合科学考察. 兰州: 兰州大学出版社, 80–82. 罗祖奎, 李性苑, 张文华, 等. 2013. 莎草科植物植被恢复试验及其对黑颈鹤分布的影响. 凯里学院学报, 31(6):81–84. 冉江洪, 刘少英, 曾宗永, 等. 1999. 四川辖曼自然保护区黑颈鹤(Grus nigricollis)的数量及分布. 应用与环境生物学报, 5(1): 41–45. 王博驰, 裴雯, 色拥军, 等. 2021. 卫星跟踪揭示撞击电线是黑颈鹤幼鸟越冬地死亡的主要原因. 动物学杂志, 56(2): 161-170. 杨玲. 2015. 湖泊湿地退化对越冬白头鹤(Grus monacha)觅食活动的影响. 安徽: 安徽大学硕士学位论文, 1–12. 张立勋, 舒美林, 安蓓, 等. 2014. 甘肃盐池湾国家级自然保护区黑颈鹤的种群数量与分布. 动物学研究, 35(增刊1): 117–123. 张明海, 李言阔. 2005. 动物生境选择研究中的时空尺度. 兽类学报, 25(4): 85–91. 邹红菲, 吴庆明. 2006. 扎龙湿地丹顶鹤和白枕鹤求偶期觅食生境对比分析. 应用生态学报, 17(3): 444–449. 邹红菲, 吴庆明, 牛茂刚. 2005. 扎龙湿地野生与散养白枕鹤繁殖前期觅食生境选择对比分析. 动物学杂志, 40(4): 45–50.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李雪竹,王博驰,杨巨才,色拥军,郭玉民.2022.甘肃盐池湾黑颈鹤亚成体夏季生境选择.动物学杂志,57(2):185-195.

复制
文章指标
  • 点击次数:556
  • 下载次数: 1386
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-02-10
  • 最后修改日期:2022-03-07
  • 录用日期:2022-03-01
  • 在线发布日期: 2022-03-28
  • 出版日期: 2022-04-20