利用红外相机监测数据分析佛坪国家级自然保护区豹猫和黄喉貂活动节律及空间分布
作者:

Using Infrared Camera Traps to Monitor the Activity Rhythm and Spatial Distribution Pattern of Leopard Cat (Prionailurus bengalensis) and Yellow- throated Marten (Martes flavigula) in Foping National Nature Reserve
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    豹猫(Prionailurus bengalensis)和黄喉貂(Martes flavigula)均为国家Ⅱ级重点保护野生动物,常同域分布,但是其生态位差异和共存机制尚不明确。为了探究这一问题,从2013年9月至2018年12月,在陕西省佛坪国家级自然保护区内共计布设37台触发式红外相机。37台相机均持续工作5年,用于对这两种中小型食肉动物的聚群模式、日活动节律、季节性动态和空间分布进行系统监测,累计相机工作日72 076 d,共捕获到独立有效事件豹猫290次、黄喉貂84次。结果表明,豹猫是典型的独居型物种,偏好夜行性,其夜间活动指数DRAI为77.4%;而黄喉貂更倾向于聚群活动,是昼行性生物,其昼间活动指数DRAI为94.1%。豹猫的季节相对多度指数SRAI,冷季显著高于暖季(t = 2.82,df = 11,P < 0.05);而黄喉貂的季节相对多度指数暖季显著高于冷季(t =﹣3.09,df = 11,P < 0.05),两种动物的月相对多度指数MRAI都呈现出明显的季节性波动规律。豹猫和黄喉貂在空间分布上存在明显的相互回避,在距离人类活动的道路较近的区域,即距离道路小于500 m范围内,豹猫的活动比黄喉貂更加频繁,其相机位点多度指数CRAI显著高于黄喉貂(Wilcoxon秩和检验P < 0.001)。本研究结果显示,这两种小型食肉动物可以通过占据不同的时空生态位来减少竞争,从而达到大范围区域共存。

    Abstract:

    [Objectives] The Leopard Cat (Prionailurus bengalensis) and Yellow-throated Marten (Martes flavigula) are both the national second-class protected species. However, as sypatric species, their ecological niche and coexistence mechanism are nevertheless unclear. [Methods] From September 2013 to December 2018, 37 infrared camera traps were set up in the Foping National Nature Reserve in Shaanxi Province. Our study area and camera trap sites can be seen from Fig. 1. Based on the monitoring data, we calculated the relative abundance index to model the cluster pattern, daytime-and-night activity rhythm, seasonal dynamics and spatial distribution of these two small and medium sized carnivores. Seasonal activity rhythm were tested by t-test and spatial activity pattern were tested by Wilcoxon rank sum test. Daily activity rhythm was modeled by kernel density method and inverse distance weighted method (weight = 5) was used to draw spatial activity pattern. All the analysis were conducted in R 3.6.3. [Results] There were a total of 72 076 camera working days and captured 290 independent and effective incidents of Leopard Cats and 84 independent and effective incidents of Yellow-throated Martens. The results showed that the Leopard Cat is a typical solitary species, preferring activity in the night (daytime-and-night relative abundance index, DRAI = 77.4%). While the Yellow-throated Marten is more gregarious and more activity in the day time (DRAI = 94.1%) (Fig. 2a). Leopard Cats reach their activity peak in a day between 3:00 and 4:00 am and the activity peak of Yellow-throated Martens appeared at 17:00 (Fig. 2a). The relative seasonal abundance index SRAI of Leopard Cats is significantly higher in the cold season than in the warm season (t = 2.82, df = 11, P < 0.05), while the SRAI of Yellow-throated Marten is significantly higher in the warm season than in the cold season (t =﹣3.09, df = 11, P < 0.05) (Fig. 3a). The monthly relative abundance index MRAI of the two species showed obvious seasonal fluctuations (Fig. 3b). There was significant mutual avoidance between Leopard Cats and Yellow-throated Martens in spatial distribution. However, Leopard Cats is more frequently recorded in the area active moved more frequently in areas closer to human paths than Yellow-throated Martens (Fig. 4a). The camera site abundance of index CRAI to the road within 500 m is significantly higher for Leopard cat’s than that of Yellow-throated Marten (Distance, Wilcoxon rank sum test: P < 0.001) (Fig. 4b). [Conclusion] The two small carnivorous mammals occupied different spatial and temporal ecological niches to reduce competition and achieve coexistence in a large region.

    参考文献
    Baddeley A, Rubak E, Turner R. 2015. Spatial Point Patterns: Methodology and Applications with R. London: Chapman and Hall/CRC Press. Bruno J F, Stachowicz J J, Bertness M D. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18(3): 119–125. Bu H, Fang W, Mcshea W J, et al. 2016. Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of Southwest China. PLoS One, 11(10): e0164271. Burton A C, Neilson E, Moreira D, et al. 2015. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3): 675–685. Chesson P. 1994. Multispecies competition in variable environments. Theoretical Population Biology, 45(3), 227–276. Gause G F. 1934. The Struggle for Existence. New York: Hafner. Hardin G. 1960. The competitive exclusion principle. Science, 131(3409): 1292–1297. Herrera H, Chávez E J, Alfaro L D, et al. 2018. Time partitioning among jaguar Panthera onca, puma Puma concolor and ocelot Leopardus pardalis (Carnivora: Felidae) in Costa Rica’s dry and rainforests. Revista de Biologia Tropical, 66(4): 1575–1584. IUCN. 2020. The IUCN Red List of Threatened Species. Version 2021-2. [EB/OL]. [2021-03-04]. https://www.iucnredlist.org. Lai X L, Zhou W L, Gao H L, et al. 2020. Impact of sympatric carnivores on den selection of wild giant pandas. Zoological Research, 41(3): 273–280. Li Z L, Wang T M, Smith J L D. 2019. Coexistence of two sympatric flagship carnivores in the human-dominated forest landscapes of Northeast Asia. Landscape Ecology, 34(2): 291–305. MacArthur R H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4): 599–619. Macdonald H. 2008. Spatial and temporal relationships between invasive American mink and native European polecats in the southern United Kingdom. Journal of Mammalogy, 89(4): 991– 1000. Martin R, Matthew L. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3): 322–337. O’Brien T G, Kinnaird M F, Wibisono H T. 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6(2): 131–139. O’connell A F, Nichols J D, Karanth K U. 2010. Camera Traps in Animal Ecology: Methods and Analysis. New York: Springer. Pierce A J, Sukumal N, Khamcha D. 2014. A yellow-throated marten Martes flavigula feeding on a red muntjac Muntiacus muntjak carcase. Small Carnivore Conservation, 51(1): 76–78. R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/. Saro L, Sunmin L, Wonkyong S, et al. 2017. Habitat potential mapping of marten (Martes flavigula) and leopard cat (Prionailurus bengalensis) in South Korea using Artificial Neural Network Machine Learning. Applied Sciences, 7(9): 912. Schoener T W. 1974. Resource partitioning in ecological communities. Science, 185(4145): 27–39. Shepard D. 1968. A two-dimensional interpolation function for irregularlyspaced data // ACM. Proceedings of the 1968 23rd ACM National Conference. New York: ACM, 517–524. Tilman D. 1982. Resource Competition and Community Structure. Princeton: Princeton University Press. Zhou W L, Nie Y G, Hu Y B, et al. 2019. Seasonal and reproductive variation in chemical constituents of scent signals in wild giant pandas. Science China-Life Science, 62(5): 648–660. Zhou Y B, Newman C, Xu W T, et al. 2010. Biogeographical variation in the diet of martens (genus Martes, Mammalia: Carnivora: Mustelidae): Adaptive foraging in generalists. Journal of Biogeography, 38(1): 137–147. 党超琪, 赵凯辉, 刘新玉. 2019. 气象因子对秦岭大熊猫季节性垂直迁徙等活动的影响. 陕西林业科技, 47(3): 1–5, 13. 陈立军, 束祖飞, 肖治术. 2019. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例. 生物多样性, 27(3): 266–272. 蒋志刚, 刘少英, 吴毅, 等. 2017. 中国哺乳动物多样性(第2版). 生物多样性, 25(8): 886–895. 李晟, 王大军, 肖治术, 等. 2014. 红外相机技术在我国野生动物研究与保护中的应用与前景. 生物多样性, 22(6): 685–695. 李明富, 李晟, 王大军, 等. 2011. 四川唐家河自然保护区扭角羚冬春季日活动模式研究. 四川动物, 30(6): 850–855. 李艳红, 吴攀文, 胡杰. 2007. 四川栗子坪自然保护区的兽类区系与资源. 四川动物, 26(4): 841–845. 李友邦, 农娟丽, 杨婉琳, 等. 2021. 弄岗同域分布赤腹松鼠和红颊长吻松鼠活动节律研究. 广西师范大学学报: 自然科学版, 39(1): 71–78. 李治霖, 多立安, 李晟, 等. 2021. 陆生食肉动物竞争与共存研究概述. 生物多样性, 29(1): 81–97. 刘小斌, 韦伟, 郑筱光, 等. 2017. 红腹锦鸡和红腹角雉活动节律—基于红外相机监测数据. 动物学杂志, 52(2): 194–202. 罗杨, 朱惊毅, 李明晶. 1995. 贵州豹猫生态的初步研究. 贵州农学院学报, (3): 21–24. 马亦生, 马青青, 何念军, 等. 2020. 基于红外相机技术调查佛坪国家级自然保护区兽类和鸟类多样性. 生物多样性, 28(2): 226–230. 马逸清, 程继臻, 傅承钊, 等. 1986. 黑龙江省兽类志. 哈尔滨: 黑龙江科学技术出版社. Smith A T, 解焱. 2000. 中国兽类野外手册. 长沙: 湖南教育出版社. 孙儒泳. 1992. 动物生态学原理. 2版. 北京: 北京师范大学出版社, 334–348. 王培潮, 钱国桢, 盛和林, 等. 1977. 貉与豹猫的冬季食性. 动物学杂志, 12(2): 43–35. 王庭林, 邹波, 刘青, 等. 2014. 山西省隰县鼬类食性的分析研究. 山西科技, 29(5): 47–49. 肖治术, 李欣海, 姜广顺. 2014红外相机技术在我国野生动物监测研究中的应用. 生物多样性, 22(6): 683–684. 晏鸣霄, 孙楠, 顾伯健, 等. 2021. 同域分布的绿孔雀与白鹇时空生态位分化. 四川动物, 40(2): 150–158. 张建军. 2000. 黄喉貂生态特性的初步观察. 河北林果研究, (增刊1): 195–196. 张逦嘉, 王安梦, 袁梨, 等. 2011. 内蒙古赛罕乌拉自然保护区4种小型食肉目动物的食性构成的初步分析. 兽类学报, 31(1): 55–61. 张履冰, 崔绍朋, 黄元骏, 等. 2014. 红外相机技术在我国野生动物监测中的应用: 问题与限制. 生物多样性, 22(6): 696–703. 章书声, 李佳琦, 郑而重, 等. 2017. 基于红外相机技术监测浙江省自然保护区豹猫生存状况. 浙江林业科技, 37(4): 12–17. 周文良, 潘涛, 李斌, 等. 2014. 利用红外相机对安徽天马国家级自然保护区鸟兽的初步调查. 生物多样性, 22(6): 776–778. 朱博伟, 王彬, 冉江洪, 等. 2019. 黄喉貂日活动节律及食性的季节变化. 兽类学报, 39(1): 52–61. 邹启先, 彭彩淳, 杨雄威, 等. 2021. 两种同域分布鹿科动物的共存时空格局. 野生动物学报, 42(1): 5–13.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘小斌,赵凯辉,王勐.2022.利用红外相机监测数据分析佛坪国家级自然保护区豹猫和黄喉貂活动节律及空间分布.动物学杂志,57(1):9-18.

复制
文章指标
  • 点击次数:803
  • 下载次数: 3519
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-03-29
  • 最后修改日期:2022-01-09
  • 录用日期:2022-01-04
  • 在线发布日期: 2022-01-19
  • 出版日期: 2022-02-20