成年雄性林麝消化道寄生虫群落 对不同扰动策略的响应
作者:
基金项目:

中央高校基本科研业务费专项资金(No. 2019ZY46,2019YC01),2020年野生动物疫病监测和预警系统维护(No. 2020076013)


Responses of Parasitic Community to Different Disturbance Strategies in Digestive Tract of Adult Male Forest Musk Deer (Moschus berezovskii)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人工繁育是当前我国保护野生林麝(Moschus berezovskii)资源的主要手段之一,但在林麝种群复壮的过程中,消化道寄生虫病始终威胁着林麝的健康。为探究林麝消化道寄生虫群落对不同扰动策略的响应,本研究分别使用复合药阿苯达唑伊维菌素粉和单一成分药阿维菌素粉去除林麝体内线虫和绦虫,监测林麝其他寄生虫和群落动态变化。选取60只雄性林麝,随机分为3组,分别为阿苯达唑伊维菌素用药组(20只)、阿维菌素用药组(20只)和未做任何处理的对照组(20只),并连续采集8周用药组和对照组林麝的新鲜粪便。基于改良的Wisconsin粪便虫卵漂浮计数法检测粪便中的虫卵和卵囊。对实验结果进行Kruskal-Wallis检验、Wilcoxon秩检验、Mann Whitney检验和双因素方差分析。研究结果显示,对照组和阿苯达唑伊维菌素用药组林麝的寄生虫感染均为混合感染,球虫为优势物种,其负载量显著高于线虫和绦虫(P < 0.05),阿维菌素用药组林麝仅感染球虫。药物扰动后,两用药组林麝的球虫流行率、平均感染强度均高于对照组,但线虫流行率均低于对照组(27.15%,42.15%)。此外,用药后,阿苯达唑伊维菌素用药组林麝先于阿维菌素用药组再次感染线虫和绦虫。通过比较用药组和对照组林麝寄生虫的群落动态变化,表明林麝消化道寄生虫感染现象较为普遍,多重感染中球虫和蠕虫存在竞争关系,复合药物阿苯达唑伊维菌素粉对林麝寄生虫群落的扰动程度更大,林麝寄生虫群落恢复能力与扰动程度成正比。建议林麝人工繁育基地加强科学性和计划性驱虫,并持续性开展林麝寄生虫感染的监测工作。

    Abstract:

    Captivity is one of the main methods to protect wild Forest Musk Deer (Moschus berezovskii) in China. However, parasitic disease is the main factor limiting the reproduction of captive individuals in the process of population rejuvenation. To investigate the response of parasite community in the digestive tract to different perturbations, we performed a perturbation experiment in captive Forest Musk Deer, by using compound drug albendazole ivermectin powder and single drug avermectin powder to suppress macroparasites, and monitored the consequences of dynamic changes in its community and other parasite species. We randomly selected 60 adult male Forest Musk Deers and divided them into different treatment groups: albendazole ivermectin group (20 ind), avermectin group (20 ind), and control group (20 ind), the control group without any treatment. We collected fresh fecal samples after anthelmintic disturbance for eight weeks for the experiment of egg floatation and count of eggs and oocysts based on Wisconsin’s egg counting method. Then we did the Kruskal-Wallis test, Wilcoxon test, Mann Whitney test, and Two-way ANOVA test of the data. The results showed that the parasite infection of Forest Musk Deer was mixed in both control group and albendazole ivermectin group after anthelmintic treatment, with coccidia being the dominant parasite taxa. The number of coccidia was higher than that of nematode or cestode (P < 0.05) (Fig. 1). In the avermectin group, only coccidia was found (Fig. 1). The prevalence and average infection intensity of coccidia in treatment group were higher than those in the control group after interference, while treated Forest Musk Deers had a lower (27.15%) nematode infection rate compared with control individuals (42.15%) (Fig. 1, Fig. 2). The reinfection of nematode and cestode in albendazole ivermectin group was quicker than that in avermectin group after interference (Fig. 4, Fig. 5). Therefore, this study has proved that parasitic infection of digestive tract is common in Forest Musk Deer, and that competitive interactions between multiple parasite infections exist in the digestive tract. The analysis of community dynamics indicated that parasite communities in the digestive tract have diverse responses to different disturbance strategies, and that the compound medicine can cause greater perturbation to the coccidia and the recovery ability of parasite community is in proportion to perturbation degree. These results have provided a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates. We suggested that the Forest Musk Deer breeding center should strengthen scientific and planned deworming, and continuously monitor parasite infection.

    参考文献
    Agnew P, Koella J C, Michalakis Y. 2000. Host life history responses to parasitism. Microbes and Infection, 2(8): 891–896. Clerc M, Devevey G, Fenton A, et al. 2018. Antibodies and coinfection drive variation in nematode burdens in wild mice. International Journal for Parasitology, 48(9/10): 785–792. Ezenwa V O. 2016. Helminth-microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunology, 38(9): 527–534. Ezenwa V O, Jolles A E. 2015. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science, 347(6218): 175–177. Hellard, E, Fouchet D, Vavre F, et al. 2015. Parasite-parasite interactions in the wild: how to detect them? Trends in Parasitology, 31(12): 640–652. Hu X L, Liu G, Wang W X, et al. 2016. Methods of preservation and flotation for the detection of nematode eggs and coccidian oocysts in faeces of the forest musk deer. Journal of Helminthology, 90(6): 680–684. Johnson P T J, de Roode J C, Fenton A. 2015. Why infectious disease research needs community ecology. Science, 349(6252): 1259504. Knowles S C L, Fenton A, Petchey O L, et al. 2013. Stability of within-host-parasite communities in a wild mammal system. Proceedings of the Royal Society B: Biological Sciences, 280(1762): 20130598. Moss W E, Mcdevitt-Galles T, Calhoun D M, et al. 2020. Tracking the assembly of nested parasite communities: Using β-diversity to understand variation in parasite richness and composition over time and scale. Journal of Animal Ecology, 89: 1532–1542. Njongmeta L M, Nfon C K, Gilbert J, et al. 2004. Cattle protected from onchocerciasis by ivermectin are highly susceptible to infection after drug withdrawal. International Journal for Parasitology, 34(9): 1069–1074. Oppliger A, Clobert J, Lecomte J, et al. 1998. Environmental stress increases the prevalence and intensity of blood parasite infection in the common lizard Lacerta vivipara. Ecology Letters, 1(2): 129–138. Pedersen A B, Antonovics J. 2013. Anthelmintic treatment alters the parasite community in a wild mouse host. Biology Letters, 9(4): 20130205. Roberts C W, Walker W, Alexander J. 2001. Sex-associated hormones and immunity to protozoan parasites. Clinical Microbiology Reviews, 14(3): 476–488. Rynkiewicz E C, Melanie C, Babayan S A, et al. 2019. Variation in local and systemic pro-inflammatory immune markers of wild wood mice after anthelmintic treatment. Integrative and Comparative Biology, 59(5): 1190–1202. Song Y, Li W, Liu H F, et al. 2018. First report of Giardia duodenalis and Enterocytozoon bieneusi in forest musk deer (Moschus berezovskii) in China. Parasites & Vectors, 11(1): 1–6. Tchakoute V T, Graham S P, Jensen S A, et al. 2006. In a bovine model of onchocerciasis, protective immunity exists naturally, is absent in drug-cured hosts, and is induced by vaccination. Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5971–5976. Zajac A M, Conboy G A. 2012. Veterinary Clinical Parasitology. America: John Wiley and Sons Ltd. 11–12. 蔡永华, 林海, 程建国, 等. 2016. 中国圈养麝内寄生虫感染情况调查. 四川动物, 35(1): 74–77. 陈冬, 程建国, 蔡永华, 等. 2016. 圈养林麝仔麝肠道寄生虫感染的监测. 经济动物学报, 20(4): 197–199. 胡晓龙, 魏雨婷, 杨双, 等. 2018. 麝科动物寄生虫的研究进展. 中国预防兽医学报, 40(2): 170–172. 林海, 程建国, 蔡永华, 等. 2017. 林麝捻转血矛线虫的分子鉴定. 中国预防兽医学报, 39(7): 597–599. 沙国润, 张化贤, 蔡永华, 等. 1994. 家养林麝寄生艾美虫二新种(真球虫目: 艾美科). 四川动物, 13(1): 1–4. 王宇, 程建国, 付文龙, 等. 2015. 四川省某养麝场林麝内寄生虫感染情况调查. 中国预防兽医学报, 37(5): 379–382. 王洪永, 蔡永华, 程建国, 等. 2011. 林麝肝片形吸虫病的诊治. 中国兽医杂志, 47(2): 96–96. 吴家炎, 王伟. 2006. 中国麝类. 北京: 中国林业出版社, 299– 301.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付雅君,高云云,黎勇,蒋本模,王洪永,胡德夫,李凯,张东.2021.成年雄性林麝消化道寄生虫群落 对不同扰动策略的响应.动物学杂志,56(6):898-907.

复制
文章指标
  • 点击次数:520
  • 下载次数: 1086
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-05-14
  • 最后修改日期:2021-11-03
  • 录用日期:2021-10-25
  • 在线发布日期: 2021-12-01
  • 出版日期: 2021-12-20