云南纳帕海湿地越冬斑头雁活动区
作者:
作者单位:

1.西南林业大学云南省高原湿地保护修复与生态服务重点实验室 昆明 650224;2.西南林业大学湿地学院 昆明 650224

基金项目:

国家自然科学基金项目(No. 32060120)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    活动区范围反映了动物在个体水平上的空间需求,开展相关研究对物种保护以及理解动物与环境之间的关系具有重要意义。于2017、2018和2019年共3个越冬季,在云南纳帕海湿地对7只斑头雁(Anser indicus)进行了卫星遥测,运用动态布朗桥模型构建了斑头雁越冬期活动区,并结合遥感技术分析了水域面积变化对斑头雁活动区的影响。结果表明:所跟踪斑头雁的总活动区域中有54.7%位于保护区范围内,其余活动区域则分布于保护区外围的草地或沼泽中;斑头雁越冬期的平均活动区面积和核心活动区面积分别为(5.98 ± 0.63)km2和(0.55 ± 0.12)km2(n = 8,2017年越冬季1只个体数据、2018年越冬季6只个体数据和2019年越冬季1只个体数据),核心活动区面积仅占活动区面积的9.2%;最大活动区面积为8.22 km2,最小仅为3.38 km2,最大核心活动区面积为1.21 km2,最小为0.12 km2;斑头雁活动区面积受纳帕海湿地水域面积变化影响较大,随着水域由南向北退缩,沼泽及草甸增多,斑头雁的活动范围变大,且会向着水域退减的方向移动;2639号斑头雁在2018年和2019年两年越冬季相同时间段的活动区面积和分布均存在显著差异,2018年越冬季活动区的面积(5.98 km2)小于2019年(8.22 km2),核心活动区的面积(0.61 km2)同样也小于2019年(1.21 km2),并且其两年越冬季活动区面积的重叠度指数IO仅为0.31。鉴于斑头雁是H5N1高致病性禽流感的重要携带者和传播者,建议保护区增加保护区管理范围,对与斑头雁活动区重合较大的村庄,包括云南省迪庆州香格里拉市建塘镇的开松、纳公和打日觉等重点管理,避免家猪与斑头雁混群觅食,倡导在冬季时对家猪进行圈养,防止可能引起的禽流感交叉传播。

    Abstract:

    Home ranges could reflect the spatial requirements of animals at the individual level. Home range research is important for species conservation and understanding the relationship between animals and the environment. [Methods] During the winters of 2017, 2018 and 2019, seven Bar-headed Geese (Anser indicus) were tracked by satellite tracking in the Napahai Wetland, Yunnan Province. The dynamic Brown Bridge model was used to construct the wintering home range of Bar-headed Geese, and the impact of water area change on the home range of Bar-headed Geese were analyzed by combining remote sensing technology. The individual monthly home range differences were analyzed using the non-parametric Kruskal-Wallis test. [Results] (1) The total home range of the tracked Bar-headed Geese was 28.49 km2, of which 54.7% located in the nature reserve; the total core area was 4.17 km2, of which 55.3% located in the nature reserve, and the rest mainly distributed in the grass or swamps on the periphery of the nature reserve and the corner area of Shangri-La Airport and the urban area (Fig. 2); (2) The average area of home range and core area of Bar-headed Geese during the wintering period were 5.98 ± 0.63 km2 and 0.55 ± 0.12 km2 (n = 8, data for one individual in wintering season of 2017, six individuals in wintering season of 2018 and one individual in wintering season of 2019). The core area accounted for only 9.2% of the home range (Table 1); (3) The home range and core area of different Bar-headed Geese varied greatly, with the maximum home range of 8.22 km2 and the minimum of only 3.38 km2, and the maximum core area of 1.21 km2 and the minimum of 0.12 km2 (Table 1); (4) In 2018, the water areas of the Napahai were 8.54 km2 in February, 6.36 km2 in March and 5.00 km2 in April, showing a trend of monthly decrease. There was a monthly trend of decreasing utilization of water by the Bar-headed Geese, with a mean utilization of water of 59.95% ± 12.9% (n = 6), 55.12% ± 16.4% (n = 6) and 23.67% ± 12.3% (n = 3) in February, March and April, respectively. The alterations in the water area of the Napahai wetland had a significant impact on the home range of the Bar-headed Geese. The marsh and meadow expanded as the water area withdrew from south to north, and the home range of the Bar-headed Goose grew broader and moved in the direction of the retreating water area. (Fig. 3); (5) As to the Bar-headed Geese of Id2639, which was tracked both in wintering seasons of 2018 and 2019, there was considerable variations of its home range area and core area. Its home range in 2018 was 5.98 km2, smaller than that in 2019 (8.22 km2), and its core area in 2018 was 0.61 km2, also smaller than that in 2019 (1.21 km2). The overlap index (IO) of the home ranges between two wintering seasons was only 0.31 (Fig. 4). [Conclusion] As the Bar-head Goose is a major carrier and transmitter of H5N1 highly pathogenic avian influenza, we suggest that the nature reserve should increase the management scope and concentrate on the local villages (Kaisong, Nagong and Darijue in Jiantang Town, Shangri-La City, Diqing Prefecture, Yunnan Province.) that overlapping with the home range of the Bar-headed Geese. To prevent the spread of avian influenza, domestic pigs should be raised in captivity in winter, and not be allowed to forage together with Bar-headed Geese.

    参考文献
    Barron D G, Brawn J D, Weatherhead P J. 2010. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution, 1(2): 180–187. Bourouiba L, Wu J, Newman S, et al. 2010. Spatial dynamics of Bar-headed Geese migration in the context of H5N1. Journal of the Royal Society Interface, 7(52): 1627–1639. Buchin K, Sijben S, Arseneau T J M, et al. 2012. Detecting movement patterns using Brownian bridges. Proceedings of the 20th international conference on advances in geographic information systems (ACM GIS). USA: Redondo Beach, California, 119–128. Cagnacci F, Focardi S, Ghisla A, et al. 2016. How many routes lead to migration? Comparison of methods to assess and characterize migratory movements. Journal of Animal Ecology, 85(1): 54–68. Calabrese J M, Fleming C H, Noonan M J, et al. 2021. Ctmmweb: A graphical user interface for autocorrelation‐informed home range estimation. Wildlife Society Bulletin, 45(1): 162–169. Clevenger A P, Purroy F J, Pelton M R. 1990. Movement and activity patterns of a European brown bear in the Cantabrian Mountains, Spain. International Association for Bear Research and Management, 8: 205–211. Cui P, Hou Y S, Tang M J, et al. 2010. Movement patterns of Bar-headed Geese Anser indicus during breeding and post- breeding periods at Qinghai Lake, China. Journal of Ornithology, 152(1): 83–92. Cyril T, Lydie A Y G, Vessaly K, et al. 2021. Qualitative risk analysis of the transmission of Highly Pathogenic Avian Influenza (HPAI) H5N1 through manure trade in C?te d'Ivoire. Asian Food Science Journal, 20(7): 38–46. Dixon A, Li X, Rahman M L, et al. 2017. Characteristics of home range areas used by Saker Falcons (Falco cherrug) wintering on the Qinghai-Tibetan Plateau. Bird Conservation International, 27(4): 525–536. Harshbarger B. 2021. Seasonal Variation in Home Range and Core Area Size in Verreaux’s Sifaka. Huntington, WV: Marshall University Doctoral Dissertation. Hawkes L A, Balachandran S, Batbayar N, et al. 2011. The trans-Himalayan flights of Bar-headed Geese (Anser indicus). Proceedings of the National Academy of Sciences, 108(23): 9516–9519. Horne J S, Garton E O, Krone S M, et al. 2007. Analyzing animal movements using Brownian bridges. Ecology, 88(9): 2354–2363. Janmaat K R, Olupot W, Chancellor R L, et al. 2009. Long-term site fidelity and individual home range shifts in Lophocebus albigena. International Journal of Primatology, 30(3): 443–466. Kernohan, B J, Gitzen R A, and Millspaugh J J. 2001. Analysis of animal space use and movements // Millspaugh J J, Marzluff J M. Radio Tracking and Animal Populations. Boise, Idaho: Academic Press, 125–166. Kie J G, Matthiopoulos J, Fieberg J, et al. 2010. The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1550): 2221–2231. Kolts J R, McRae S B J Eevolution. 2017. Seasonal home range dynamics and sex differences in habitat use in a threatened, coastal marsh bird. Ecology and Evolution, 7(4): 1101–1111. Kranstauber B, Kays R, LaPoint S D, et al. 2012. A dynamic Brownian Bridge Movement Model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology, 81(4): 738–746. Liu T, Xu Y, Mo B, et al. 2020. Home range size and habitat use of the blue-crowned laughingthrush during the breeding season. PeerJ, 8: e8785. Newman S H, Iverson S A, Takekawa J Y, et al. 2009. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia. PLoS One, 4(5): e5729. Powell R A, Mitchell M S. 2012. What is a home range? Journal of Mammalogy, 93(4): 948–958. Signer J, Fieberg J R. 2021. A fresh look at an old concept: Home- range estimation in a tidy world. PeerJ, 9: e11031. van der Ven J, Gole POuweneel G. 2010. Bar-headed Geese Anser indicus: notes from breeding and wintering areas. Goose Bulletin, (10): 7–17. Yang F, Zhang Y Q. 2014. Quantities and distribution of the Black-necked Crane (Grus nigricollis) and other large waterfowl on the Yunnan and Guizhou Plateau. Zoological Research, 35(Suppl 1): 80. Zhang J, Deng X, Xie Y, et al. 2020a. The importance of the Qinghai-Tibet Plateau for Bar-headed Geese Anser indicus: results from GPS/GSM telemetry. Wildfowl, 70(70): 57–75. Zhang J, Xie Y, Li L, et al. 2020b. Assessing site-safeguard effectiveness and habitat preferences of Bar-headed Geese (Anser indicus) at their stopover sites within the Qinghai-Tibet Plateau using GPS/GSM telemetry. Avian Research, 11(1): 1–13. Zheng R, Smith L M, Prosser D J, et al. 2018. Investigating home range, movement pattern, and habitat selection of Bar-headed Geese during breeding season at Qinghai Lake, China. Animals, 8(10): 182. 程雅畅. 2015. 基于GPS遥测的江西鄱阳湖越冬白枕鹤(Grus vipio)活动区和栖息地选择研究. 北京: 北京林业大学硕士学位论文. 邓书斌, 陈秋锦, 杜会建, 等. 2014. ENVI遥感图像处理方法. 北京: 高等教育出版社, 393–406. 何久娣, 罗泽, 苏锦河, 等. 2015. 基于高斯模型的T-LoCoH候鸟活动区估计算法研究及应用科研信息化技术与应用, 6(6): 56–64. 胡金明, 李杰, 袁寒, 等. 2010. 纳帕海湿地季节性景观格局动态变化及其驱动. 地理研究, 29(5): 899–908. 黄田, 徐正刚, 周立波, 等. 2019. 水位波动对洞庭湖越冬小天鹅活动区的影响. 生态学报, 39(22): 8657–8666. 李海燕, 于康震, 杨焕良, 等. 2004. 中国猪源H5N1和H9N2亚型流感病毒的分离鉴定. 中国预防兽医学报, 26(1): 4–9. 李杰, 胡金明, 董云霞, 等. 2010. 1994~2006年滇西北纳帕海流域及其湿地景观变化研究. 山地学报, 28(2): 247–256. 刘成林, 谭胤静, 林联盛, 等. 2011. 鄱阳湖水位变化对候鸟栖息地的影响. 湖泊科学, 23(1): 129–135. 刘冬平. 2010. 青海湖斑头雁(Anser indicus)的繁殖期活动性、迁徙路线及其与禽流感暴发的时空关系. 北京: 中国林业科学研究院博士学位论文. 刘冬平, 张国钢, 钱法文, 等. 2010. 西藏雅鲁藏布江中游斑头雁的越冬种群数量、分布和活动区. 生态学报, 30(15): 4173–4179. 刘强, 蒋文静. 2018. 云南纳帕海湿地冬季景观格局动态. 西南林业大学学报: 自然科学, 38(4): 139–145. 刘学先. 2016. 2015年云南纳帕海自然保护区大型水禽的数量调查研究. 绿色科技, (6): 123–124. 龙博, 陈忠, 李玉春. 2011. 不同因素对动物活动区面积的影响. 海南师范大学学报: 自然科学版, 24(4): 439–443. 宋亚统, 罗泽, 郑若冰. 2016. 青海湖地区赤麻鸭活动区和栖息地选择的研究. 科研信息化技术与应用, 7(4): 38–45. 宋志勇, 曹明, 李金华. 2018. 纳帕海和碧塔海湿地资源现状与保护管理对策. 安徽农业科学, 46(27): 56–58+72. 王磊, 刘强, 杨俊杰, 等. 2020. 基于卫星跟踪的钳嘴鹳家域研究. 南京林业大学学报: 自然科学版, 44(6): 33–38. 王丽. 2015. 近20年来纳帕海湿地景观格局变化及其对黑颈鹤生境质量的影响研究. 昆明: 云南大学硕士学位论文. 王泉泉. 2018. 滇西北高原典型湿地纳帕海景观动态变化分析. 绿色科技, (10): 20–22, 24. 王松. 2020. 鄱阳湖白额雁迁飞规律与活动区范围研究. 长沙: 中南林业科技大学硕士学位论文. 魏振华. 2019. 鄱阳湖水位波动对小天鹅时空动态和栖息地选择的影响. 南昌: 江西师范大学硕士学位论文. 张国钢, 刘冬平, 钱法文, 等. 2011. 西藏夯错水鸟多样性及斑头雁繁殖活动区的变化. 生态学报, 31(2): 395–400. 张晋东, Hull V, 欧阳志云. 2013. 活动区研究进展. 生态学报, 33(11): 3269–3279. 张娜. 2019. 鄱阳湖湿地枯水期獐(Hydropotes inermis)野放初期的活动区和生境选择. 南昌: 江西师范大学硕士学位论文. 郑作新. 1997. 中国动物志 鸟纲 第二卷 雁形目. 北京: 科学出版社, 99–101. 周祥. 2011. 云南纳帕海典型森林水文生态功能研究. 北京: 北京林业大学博士学位论文. 朱筱佳, 李来兴, 杨乐, 等. 2009. 青海湖鸟岛斑头雁种群对H5N1亚型禽流感病毒的免疫状况. 动物学研究, 30(4): 406–410.
    引证文献
引用本文

孟子文,肖琳娜,雷宇,王磊,刘强.2022.云南纳帕海湿地越冬斑头雁活动区.动物学杂志,57(4):554-563.

复制
文章指标
  • 点击次数:262
  • 下载次数: 1022
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-08
  • 最后修改日期:2022-06-30
  • 录用日期:2022-06-27
  • 在线发布日期: 2022-08-18