外源褪黑激素通过调节摄食和产热降低大绒鼠的体重
作者:
作者单位:

1.云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室;2.云南经济管理学院;3.① 云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室;4.③ 生物能源持续开发利用教育部工程研究中心;5.④云南省生物质能与环境生物技术重点试验室

基金项目:

国家自然科学基金项目(No. 32160254),云南省中青年学术和技术带头人后备人才项目(No. 2019HB013),云南省万人计划青年拔尖人才项目(No. YNWR-QNRC-2019-047)


Exogenous Melatonin Can Reduce Body Mass in Eothenomys miletus by Regulating Food Intake and Thermogenesis
Affiliation:

云南师范大学

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    褪黑激素(MEL)是一种向动物传递光周期信息的分子,也参与能量稳态的调节。为探讨外源褪黑激素对大绒鼠(Eothenomys miletus)体重、能量代谢及体温调节的影响,将大绒鼠置于(25 ± 1)℃,光周期12 L∶12 D(白昼与黑夜各12 h)的环境中,每日腹腔注射褪黑激素(20 μg/kg),共28 d。结果发现,注射外源性褪黑激素后,大绒鼠的体重和摄食量显著降低,摄水量增加;核心体温和肩胛间皮肤温度显著升高;静止代谢率(RMR)和非颤抖性产热(NST)显著升高;肝和褐色脂肪组织(BAT)中的线粒体蛋白含量、细胞色素c氧化酶(COX)活性升高;褐色脂肪组织中的总蛋白、解偶联蛋白1(UCP1)、α-磷酸甘油氧化酶(α-PGO)、T45′-脱碘酶(T45′-DII)活性显著升高,但对肝总蛋白和α-PGO无显著影响;血清中瘦素、三碘甲腺原氨酸(T3)浓度显著上升,甲状腺素(T4)浓度显著降低。此外,注射褪黑激素后大绒鼠睾丸重量显著降低,表明其导致大绒鼠性腺退化。相关分析表明,解偶联蛋白1含量和三碘甲腺原氨酸浓度呈正相关,T45′-脱碘酶活性和三碘甲腺原氨酸含量呈正相关,暗示T45′-脱碘酶可能在褪黑激素诱导褐色脂肪组织产热中起重要作用。总之,外源褪黑激素可能通过抑制摄食和增加产热降低了大绒鼠的体重。

    Abstract:

    [Objectives] Melatonin (MEL) is a molecule that conveys photoperiodic information in animals, which is also involved in the regulation of energy homeostasis. The present study aims to investigate the effects of exogenous melatonin on body mass, energy metabolism and thermoregulation in Eothenomys miletus. [Methods] E. miletus were placed at 25 ± 1 ℃ with a photoperiod of 12 L∶12 D (day and night 12 hours each) and received intraperitoneal injection of melatonin (20 μg/kg) daily for 28 days. Body mass, body temperature, food intake, water intake, thermogenic capacity and hormone concentrations were measured. Continuous changes in body temperature, food intake, water intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST) were measured by repeated measures covariance analysis (with body mass as a covariate). Body mass changes during acclimation were analyzed by repeated measurements, and body mass differences between groups were analyzed by independent sample t test. Differences of serum hormone contents, protein content in liver and brown adipose tissue (BAT), enzyme activity and other indicators between groups were analyzed by covariance analysis (with body mass as a covariate). The relationship between uncoupling protein 1 (UCP1) content, thyroxin 5′-deiodinase (T45′-DII) activity and serum triiodothyronine (T3) content was analyzed by Pearson correlation analysis. [Results] The results showed that exogenous melatonin injection significantly reduced body mass and food intake (Fig. 1a, Fig. 3a), while water intake increased (Fig. 3b). Core body temperature and interscapular skin temperature increased significantly (Fig. 1b, Fig. 2), resting metabolic rate and nonshivering thermogenesis also increased significantly (Fig. 4a, Fig. 4b). Mitochondrial protein content and cytochrome c oxidase (COX) activity in liver and brown adipose tissue increased, there were also significant increases in total protein in brown adipose tissue, uncoupling protein 1, α-glycerophosphate oxidase (α-PGO) and thyroxin 5’-deiodinase activities, but there were no significant effects on total liver protein or α-glycerophosphate oxidase in liver. Serum concentrations of leptin and triiodothyronine were significantly increased, while thyroxine (T4) was significantly decreased. Moreover, testicular mass was significantly reduced after melatonin injection (Table 2), suggesting that melatonin caused gonadal degeneration in E. miletus. Correlation analysis showed a positive correlation between uncoupling protein 1 content and triiodothyronine concentration (Fig. 5a), and a positive correlation between thyroxin 5′-deiodinase activity and triiodothyronine content (Fig. 5b), suggesting that thyroxin 5’-deiodinase may play an important role in the melatonin-induced thermogenesis of brown adipose tissue. [Conclusion] In conclusion, exogenous melatonin may reduce body mass in E. miletus by inhibiting feeding and increasing thermogenesis.

    参考文献
    Agil A, Navarro-Alarcon M, Ali F A Z, et al. 2021. Melatonin enhances the mitochondrial functionality of brown adipose tissue in obese-diabetic rats. Antioxidants (Basel), 10(9): 1482. Agil A, Navarro-Alarcón M, Ruiz R, et al. 2011. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. Journal of Pineal Research, 50(2): 207–212. Alonso-Vale M I C, Andreotti S, Borges-Silva C D N, et al. 2006. Intermittent and rhythmic exposure to melatonin in primary cultured adipocytes enhances the insulin and dexamethasone effects on leptin expression. Journal of Pineal Research, 41(1): 28–34. Amaral F G D, Cipolla-Neto J. 2018. A brief review about melatonin, a pineal hormone. Archives of Endocrinology and Metabolism, 62(4): 472–479. Andrews R V, Belknap R W. 1993. Seasonal acclimation of prairie deer mice. International Journal of Biometeorology, 37(4): 190–193. Barrett P, Bolborea M. 2012. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. Journal of Pineal Research, 52(4): 376–388. Bartness T J, Demas G E, Song C K. 2002. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Experimental Biology and Medicine (Maywood), 227(6): 363–376. Bartness T J, Powers J B, Hastings M H, et al. 1993. The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? Journal of Pineal Research, 15(4): 161–90. Bartness T J, Wade G N. 1984. Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): role of pineal gland, melatonin, gonads, and diet. Endocrinology, 114(2): 492–498. Bianco A C, Silva J E. 1987. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. Journal of Clinical Investigation, 79(1):295–300. Bilbo S D, Nelson R J. 2002. Melatonin regulates energy balance and attenuates fever in Siberian hamsters. Endocrinology, 143(7): 2527–33. Binkley S, Kluth E, Menaker M. 1971. Pineal function in sparrows: circadian rhythms and body temperature. Science, 174(4006): 311–314. Boratyński J S, Jefimow M, Wojciechowski M S. 2017. Melatonin attenuates phenotypic flexibility of energy metabolism in a photoresponsive mammal, the Siberian hamster. The Journal of Experimental Biology, 220(17): 3154–3161. Buonfiglio D, Parthimos R, Dantas R, et al. 2018. Melatonin absence leads to long-term leptin resistance and overweight in rats. Frontiers in Endocrinology, 9: 122. Buonfiglio D, Tchio C, Furigo I, et al. 2019. Removing melatonin receptor type 1 signaling leads to selective leptin resistance in the arcuate nucleus. Journal of Pineal Research, 67(2): e12580. Cannon B, Nedergaard J. 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1): 277–359. Cipolla-Neto J, Amaral F G D. 2018. Melatonin as a hormone: new physiological and clinical insights. Endocrine Reviews, 39(6): 990–1028. Cipolla-Neto J, Amaral F G, Afeche S C, et al. 2014. Melatonin, energy metabolism, and obesity: a review. Journal of Pineal Research, 56(4): 371–381. Dawson D, Gibbon S, Singh P. 1996. The hypothermic effect of melatonin on core body temperature: is more better? Journal of Pineal Research, 20(4): 192–197. de Souza C A P, Gallo C C, de Camargo L S, et al. 2019. Melatonin multiple effects on brown adipose tissue molecular machinery. Journal of Pineal Research, 66(2): e12549. Falcón J, Besseau L, Sauzet S, et al. 2007. Melatonin effect on the hypothalamopituitary axis in fish. Trends in Endocrinology & Metabolism, 18(2): 81–88. Farias T D S M, Paixao R I D, Cruz M M, et al. 2019. Melatonin supplementation attenuates the pro-inflammatory adipokines expression in visceral fat from obese mice induced by a high-fat diet. Cells, 8(9): 1041. Feist D D, Feist C F. 1986. Effects of cold, short day and melatonin on thermogenesis, body weight and reproductive organs in Alaskan red-backed voles. Journal of Comparative Physiology B-biochemical Systemic & Environmental Physiology, 156(5): 741–746. Fenn A M, Fonken L K, Nelson R J. 2011. Sustained melatonin treatment blocks body mass, pelage, reproductive, and fever responses to short day lengths in female Siberian hamsters. Journal of Pineal Research, 51(2): 180–1866. Fernández Vázquez G, Reiter R J, Agil A. 2018. Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control. Journal of Pineal Research, 64(4): e12472. Friedman J M, Halaas J L. 1998. Leptin and the regulation of body weight in mammals. Nature, 395(6704): 793–770. Genario R, Cipolla-Neto J, Bueno A A, et al. 2021. Melatonin supplementation in the management of obesity and obesity- associated disorders: a review of physiological mechanisms and clinical applications. Pharmacological Research, 163(1): 105254. Guan Q, Wang Z, Cao J, et al. 2021. Mechanisms of melatonin in obesity: a review. International Journal of Molecular Sciences, 23(1): 218. Haim A, Fourie F L. 1982. Effects of melatonin on heat production and enzymatic activity in diurnal and in nocturnal rodents. Comparative Biochemistry and Physiology Part A: Physiology, 71(3): 473–4755. Hall E S, Lynch G R. 1985. Two daily melatonin injections differentially induce nonshivering thermogenesis and gonadal regression in the mouse (Peromyscus leucopus). Life Sciences, 37(8): 783–788. Halpern B, Mancini M C, Bueno C, et al. 2019. Melatonin increases brown adipose tissue volume and activity in patients with melatonin deficiency: a proof-of-concept study. Diabetes, 68(5): 947–952. Halpern B, Mancini M C, Mendes C, et al. 2020. Melatonin deficiency decreases brown adipose tissue acute thermogenic capacity of in rats measured by 18F-FDG PET. Diabetology Metabolic Syndrome, 12(1): 82. Harris A S, Burgess H J, Dawson D. 2001. The effects of day-time exogenous melatonin administration on cardiac autonomic activity. Journal of Pineal Research, 31(3): 199–205. Heldmaier G, Hoffmann K. 1974. Melatonin stimulates growth of brown adipose tissue. Nature, 247(5348): 224–225. Heldmaier G, Lynch G R. 1986. Pineal involvement in thermoregulation and acclimatization. Pineal Research Reviews, 4: 97–139. Heldmaier G, Steinlechner S, Rafael J, et al. 1981. Photoperiod control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science, 212(4497): 917–919. Holtorf A P, Heldmaier G, Thiele G, et al. 1985. Diurnal changes in sensitivity to melatonin in intact and pinealectomized Djungarian hamsters: effects on thermogenesis, cold tolerance, and gonads. Journal of Pineal Research, 2(4): 393–403. Hussein M R, Ahmed O G, Hassan A F, et al. 2007. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. International Journal of Experimental Pathology, 88(1): 19–29. Jiménez-Aranda A, Fernández-Vázquez G, Campos D, et al. 2013. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. Journal of Pineal Research, 55(4): 416–423. Karamitri A, Jockers R. 2019. Melatonin in type 2 diabetes mellitus and obesity. Nature Reviews Endocrinology, 15(2): 105–125. Lv D, Tan T, Zhu T, et al. 2019. Leptin mediates the effects of melatonin on female reproduction in mammals. Journal of Pineal Research, 66(3): e12559. Margolis D J, Lynch G R. 1981. Effects of daily melatonin injections on female reproduction in the white-footed mouse, Peromyscus leucopus. General & Comparative Endocrinology, 44(4): 530–537. Mendes C, Gomes G, Belpiede L T, et al. 2021. The effects of melatonin daily supplementation to aged rats on the ability to withstand cold, thermoregulation and body weight. Life Sciences, 265(1): 118769. Owino S, Buonfiglio D D C, Tchio C, et al. 2019. Melatonin signaling a key regulator of glucose homeostasis and energy metabolism. Frontiers in Endocrinology (Lausanne), 10: 488. Padmavathamma K, Joshi B N. 1994. Thermotrophic effect of melatonin in adrenalectomized and thyroidectomized rats. Biological Signals, 3(1): 53–58. Pandi-Perumal S R, Srinivasan V, Maestroni G J, et al. 2006. Melatonin: Nature's most versatile biological signal? Febs Journal, 273(13): 2813–2838. Pivonello C, Negri M, Patalano R, et al. 2022. The role of melatonin in the molecular mechanisms underlying metaflammation and infections in obesity: A narrative review. Obes Reviews, 23(3): e13390. Puig-Domingo M, Guerrero J M, Menéndez-Pelaez A, et al. 1989. Melatonin specifically stimulates type-II thyroxine 5′-deiodination in brown adipose tissue of Syrian hamsters. Journal of Endocrinology, 122(2): 553–556. Puig-Domingo M, Guerrero J M, Reiter R J, et al. 1988. Thyroxine 5′-deiodination in brown adipose tissue and pineal gland: implications for thermogenic regulation and role of melatonin. Endocrinology, 123(2): 677–680. Richardson B A, Studier E H, Stallone J N, et al. 1992. Effects of melatonin on water metabolism and renal function in male Syrian hamsters (Mesocricetus auratus). Journal of Pineal Research, 13(2):49–59. Ríos-Lugo M J, Cano P, Jiménez-Ortega V, et al. 2010. Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. Journal of Pineal Research, 49(4): 342–348. Ríos-Lugo M J, Jiménez-Ortega V, Cano-Barquilla P, et al. 2015. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats. Hormone Molerular Biology and Clinical Investigation, 21(3): 175–183. Ryu V, Zarebidaki E, Albers H E, et al. 2018. Short photoperiod reverses obesity in Siberian hamsters via sympathetically induced lipolysis and Browning in adipose tissue. Physiology & Behavior, 190(6): 11–20. Saarela S, Reiter R J. 1994. Function of melatonin in thermoregulatory processes. Life Sciences, 54(5): 295–311. Shor E K, Brown S P, Freeman D A. 2020. A novel role for the pineal gland: Regulating seasonal shifts in the gut microbiota of Siberian hamsters. Journal of Pineal Research, 69(4): e12696. Song Y M, Chen M D. 2009. Effects of melatonin administration on plasma leptin concentration and adipose tissue leptin secretion in mice. Acta Biologica Hungarica, 60(4): 399–407. Stefulj J, H?rtner M, Ghosh M, et al. 2001. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. Journal of Pineal Research, 30(4): 243–247. Suriagandhi V, Nachiappan V. 2022. Protective effects of melatonin against obesity-induced by leptin lesistance. Behavioural Brain Research, 417(1): 113598. Szewczyk-Golec K, Wo?niak A, Reiter R J. 2015. Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity. Journal of Pineal Research, 59(3): 277–291. Tamura I, Tamura H, Kawamoto-Jozaki M, et al. 2021. Long-term melatonin treatment attenuates body weight gain with aging in female mice. Journal of Endocrinology, 251(1): 15–25. Tan D X, Hardeland R, Back K, et al. 2016. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. Journal of Pineal Research, 61(1): 27–40. Tan D X, Manchester L C, Fuentes-Broto L, et al. 2011. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obesity Reviews, 12(3): 167–188. Vaughan M K, Richardson B A, Johnson L Y, et al. 1983. Natural and synthetic analogues of melatonin and related compounds. II. Effects on plasma thyroid hormones and cholesterol levels in male Syrian hamsters. Journal of Neural Transmission, 56(4): 279–291. Viswanathan M, Hissa R, George J C. 1986. Effects of short photoperiod and melatonin treatment on thermogenesis in the Syrian hamster. Journal of Pineal Research, 3(4): 311–21. Vivanco P, Ortiz V, Rol M A, et al. 2007. Looking for the keys to diurnality downstream from the circadian clock: role of melatonin in a dual-phasing rodent, Octodon degus. Journal of Pineal Research, 42(3): 280–290. Wolden-Hanson T, Mitton D R, McCants R L, Yet al. 2000. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology, 141(2): 487–497. Xu Z, You W, Liu J, et al. 2020. Elucidating the regulatory role of melatonin in brown, white, and beige adipocytes. Advances in Nutrition, 11(2): 447–460. Yau W W, Singh B K, Lesmana R, et al. 2019. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 15(1): 131–150. Zhang Y, Proenca R, Mafei M, et al. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature, 372(6505): 425–432. Zhu W L, Jia T, Xiao L, et al. 2010. Effects of cold acclimation on body mass, serum leptin level, energy metabolism and thermogenesis in Eothenomys miletus in Hengduan Mountains region. Journal of Thermal Biology, 35(1): 41–46. Zhu W L, Zhang H, Zhang L, et al. 2014. Thermogenic properties of Yunnan red-backed voles (Eothenomys miletus) from the Hengduan mountain region. Animal Biology, 64(1): 59–73. Zhu W L, Cai J H, Lian X, et al. 2011. Effects of photoperiod on energy intake, thermogenesis and body mass in Eothenomys miletus in Hengduan Mountain region. Journal of Thermal Biology, 36(7): 380–385. Zhu W L, Jia T, Xiao L, et al. 2008. Evaporative water loss and energy metabolic in two small mammals, voles (Eothenomys miletus) and mice (Apodemus chevrieri), in Hengduan mountains region. Journal of Thermal Biology, 33(6): 324– 331. 侯建军, 黄晨西, 李庆芬. 1998. 褪黑激素对布氏田鼠适应性产热的诱导作用. 动物学报, 44(1): 21–27. 罗泽珣, 陈卫, 高武. 2000. 中国动物志. 北京: 科学出版社, 89–95. 王海, 杨晓密, 刘春燕, 等. 2006. 大绒鼠和高山姬鼠的体温调节和产热特征. 兽类学报, 26(2): 144–151. 王政昆, 李庆芬, 孙儒泳. 2000. 外源性褪黑激素对中缅树鼩适应性产热特征的影响. 动物学报, 46(2): 154–159. 朱万龙, 贾婷, 练硝, 等. 2010. 横断山脉大绒鼠最大代谢率的季节性差异. 生态学报, 30(5): 1133–1139.
    引证文献
引用本文

陈辉宝,贾婷,张浩,王政昆,朱万龙.2022.外源褪黑激素通过调节摄食和产热降低大绒鼠的体重.动物学杂志,57(6):880-896.

复制
文章指标
  • 点击次数:155
  • 下载次数: 1242
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-04-09
  • 最后修改日期:2022-11-23
  • 录用日期:2022-11-23
  • 在线发布日期: 2022-12-15
  • 出版日期: 2022-12-15